HPOEKT&COCDT ® 34-36 Peyo Yavorov blvd, Sofia 1164, Bulgaria

+359 2 423 4455

https://calcpad.eu proektsoft.bg@gmail.com

X Calcpad VM

Version

7.5 Readme!

Table of Contents

TADIE OF CONTENTS......ceeee ettt ettt 1
ADOUL CaICPAA VIV ..ottt bbbt 4
FIEldS Of @PPIICAION ettt bbbttt bbbt 5
INSTAITATION oottt bbb 5
LICENSING AN TEIMS OFf USE.....euieieeeee ettt bbb bbb 8
ACKNOWIEAGMENTS ..ottt bbb 8
HOW T WOTKS oottt bbb 8
TheoretiCal DACKGIrOUNG. ...t 9
WITHING COOR .ttt bbb bbb 10
NUMEIIC KEYPAG ..ottt bbb 10
MOVING INSIAE ThE TEXE...... ettt 10
SEIECTING TEXL corverieete et 11
DEIETING TOXT .ottt bbb 11
COPY ittt s bbbt 11
PASTE .. e 11
UNG Ottt s 11
REAO ..o s 11
FINO e b 11
COAING @IS ...ttt sttt 12
SYNtaX NIGNIIGNTING .ttt 12
AUTO-TNAENTATION ...ttt bbb 12
AULO-COMPIETE ..ottt sttt sttt 13
Bracket MatChiNgottt nnen 13
GIEEK TETEEIS ..ottt bbb 13
USING NOTEPAA + + .ottt sttt ss st s s 14
EXPIESSIONS ..ottt s 14
CONSTANTS. ...ttt 15
RNt bbb 15
COMIPIEX ettt sttt 15

Page 1 /97

https://calcpad.eu/
mailto:proektsoft.bg@gmail.com

VATTADIES ...ttt s e et e et s a st s e et st as s es st s s ses st s s e sesstas s sessasasaesssseasaenenseanas 16

OPEIATOIS ...ttt e s sttt 16
OPEIAtOr SNOMCULS.....cueieeeie ettt st s bbbt 17
Operator precedence and aSSOCIATIVITYoevrierrierrieieeireireieeiese et ssse s e 17
REIAtIONA] EXPIESSIONS ...ttt sttt 17
LOGICAI @XPIESSIONS.....eoiereerieeie ettt sttt 17
COMPIEX AIHENMETIC ..ottt 18

BrACKEES ..o bbb 18

FUNGCLIONS .ottt st b b bbbt 19
Library (DUIlt-IN) fUNCHIONS. ...ttt ss s 19
CUuStOmM (USEr dEfINEA) FUNCHIONS c..e.eeeeeeeeee ettt eees s s s st s sas st s et s s s s st s eseasesnaees 26

PLOTEING ettt R AR 27

NUMETICAI METNOAS ...t bbb s 30
ROOT FINAING ettt sttt 30
IVIINIMUNM <ttt s et st 30
IMLAXIMIUIM ettt e e bbbt 30
NUMEFCAl INTEGIATION. ..ottt nses 31
NUuMerical dIffEr@NTIAtION ...t bbb 31
GENETAl CONSIARTATIONS. ..ottt et 31

[EErATIVE PIOCEAUIES ...ttt sttt s bbb sees 32
SUIM ettt bbb 32
PROTUCT ...ttt bbbt 32
REPICAT ...ttt bbbt 33

UNIES ottt bbb 34
PredefiN@d UNIES ...ttt e 35
CUSTOM UNIES oottt bbb bbb 37

VBCEOTS ..ottt b bt 37
Internal implementation and types Of VECLOIS ... 37
DIBTINITION ..ottt bbb bbb 38
INAEXING oottt bbbttt 38
SEPUCTUTAL FUNCHIONS ..ottt bt 39
Data fUNCLIONS ...ttt bbb 41
IMALN FUNCHIONS ...ttt 43
Aggregate and interpolation fUNCHIONS ... ssse s esenes 45
OPEIALOLS ..ottt st 45

IMMAEFICES oottt bbb bbb 45
Internal implementation and types Of MALriCeScc.vcnreinecineececirsceiecsiseeseesisesesieens 45

Page 2 / 97

DO INIEION ettt e e s et s e s e e s e s s esaseesensaseasasesasesasens s esaseensens 46

INAEXING ottt 47
CreatioNal FUNCLIONS ...ttt 48
SEIUCTUTAl FUNCLIONS oottt bbbt 51
Data FUNCLIONS «..ouveereeceiieceeie sttt 55
IMAEN FUNCHIONS oottt bbb 59
Aggregate and interpolation fUNCHIONS ... 71
OPEIATOIS ..ottt bbb 73
REPOITING w8t 75
HEAAINGS oottt a bbb 75
TEXE/COMIMENTS ...ttt 76
UNIES TN COMMIEBNTESomtrieiciecieicitie st tse et ettt 76
Formatting With HEMI @nd CSS....... ettt ss st ssss st ssss s saees 76
PredefiN@d ClaSSES. ...ttt 78
CONEENT FOIAING ..ttt s bbb ss st 78
[IMI@GIES oAbt 78
Formatting With MarkAOWN............iee ettt ssss st ss s ssss s saes 79
FOIMAttiNg TOOIDAN......c ettt ss et saes 80
PrOGIAMIMING ettt ettt 81
[NPUL FOTIMNS .ottt siees s 81
Advanced Ul With HEMI @nd CSS ...ttt ssss e sssessesessnes 83
OULPUL CONTIOL.etitrti ettt sttt snnes 84
CONAITIONA] @XECUTION. ..ottt 85
[EEIATION DIOCKScovveeeiii ettt bbb bbbt 86
Interactive (Step-Dy-StEP) EXECULION ...ttt sssssaees 87
MOAUIES (INCIUAR) ...ttt ettt ettt st sttt sttt s st s st st s s ssssnasannes 88
Macros and STrNG VArIADIES ...t 88
IMport/export Of @XTErNAl Aata ...ttt ss st ss s saes 89
TEXE/CSV IS oottt 89
EXCEI FIES oottt bbb bbbt 91
RESUIES .ottt s bbb 92
SUBDSTITULION oottt bbb bbb 92
ROUNAING ottt sbst et bbb ettt 93
FOMMATEING .ottt bbb bbbt 93
CUSEOM FOIMAL STIINGS...uuivuciererieciieieciiee s s sss bbb 94
SCAIING vttt 95
SAVING The OULPUL......ceee ettt 95

Page 3 /97

P INEING ettt R s 95

COPYING ettt s s ss e s E ARt 96
EXPOI 1O WOTd. ..ottt 96
EXPOIT T0 PDF ...ttt b bbb 96
WOTKING WIth FIlES ..ottt 97
INEW .ttt e b et 97
OPON ettt ARt 97
SAVE .ottt et 97
SAVE Attt s 97

About Calcpad VM

Calcpad is free and open-source software for mathematical and engineering calculations. It combines

powerful computational algorithms with Html formatted reporting with export to Word. It is simple

and easy to use, but it also includes many advanced features:

real and complex numbers (rectangular and polar-phasor formats);

units of measurement (SI, Imperial and USCS);

vectors and matrices: rectangular, symmetric, column, diagonal, upper/lower triangular;
custom variables and units;

built-in library with common math functions;

vectors and matrix functions:

o data functions: search, lookup, sort, count, etc,;

o aggregate functions: min, max, sum, sumsg, srss, average, product, (geometric) mean, etc,;

o math functions: norm, condition, determinant, rank, trace, transpose, adjugate and cofactor,
inverse, factorization (Cholesky, Idlt, lu, gr and svd), eigenvalues/vectors and linear systems
of equations;

custom functions of multiple parameters f(x; y; z; ...);

powerful numerical methods for root and extremum finding, numerical integration and
differentiation;

finite sum, product and iteration procedures, Fourier series and FFT;
modules, macros and string variables;

reading and writing data from/to text, CSV and Excel files;

program flow control with conditions and loops;

"titles” and 'text' comments in quotes;

support for Html, CSS and Markdown in comments for rich formatting;
function plotting, images, tables, parametric SVG drawings, etc.;
automatic generation of Html forms for data input;

professional looking Html reports for viewing and printing;

Page 4 / 97

e export to Word (*.docx) and PDF documents;

¢ variable substitution and smart rounding of numbers;

e output visibility control and content folding;

e support for plain text (*.txt, *.cpd) and binary (*.cpdz) file formats.

This software is developed using the C# programming language and latest computer technologies.

It automatically parses the input, substitutes the variables, calculates the expressions and displays

the output. All results are sent to a professional looking Html report for viewing and printing.

) Calcpad 6.2.1 - Rectangular Slab.cpd

File Edit

™ @
-

Code

© O NV A WN R

10

11
12
13
14
15
16
17
18
19
20
21

Yo O+ M

— Numb:

8
5
2

o|lals|~

Round to

Fie

[ds of application

= (=] X
Insert Qutput Help Numbers: Angles: Non-metric units: Equation format
FT} F} « ~» O & o Real Complex E“ [v] AutoRun D| R |G UK | US Professional = Inline % QE,L\ \—\ﬁ] B! ;ﬁ
ke e
Output
"Elastic Analysis of Rectangular Slab ’ A
B Deflections
<hr /> 4
a : .
'Dimensions in plan -'a = ? {6}m','b = ? {4}m qo‘(f;) N A
'<table><tr><td> w(x; y)= l; -(Z.\'a(nz:.\')-(Z;ll(m:M-Sb(iz;)')))
‘Slab thickness -'t ? {e.1}m m=0 n=0
'Distributed load -'q ? {10}*(kN/m"2) 6:
'Elastic modulus -'E ? {35000}MPa
'Poisson’s ratio -'v ? {0.15}
‘Number of iterations -'N ? {5}
'</td><td><img src="https://calcpad.eu/media/mechanics/elastic/
slab.png" style="height:11@pt; margin-left:4@pt;"></td></tr></
table>
#rad
#post
'Cylindrical stiffness -'D E*t~37/(12*(1 - v°2))
a = a/b
a2 = a2 i AT e "
q0 = 167q/n'2 v 0 05 1 15 2 25 3 35 4 45 5 55 6
'Auxiliary functions il
kenlistzin e Maximum value - n‘(iz ﬁ) = u'(ﬂ: ﬂ) =6.63 mm
k_2(n) = 4*n*(n + 1) + 1 22 2*3
A(m; n) = k_2(m) + a_2"k_2(n)' => 'A_1(m; n) = 1/A(m; n)"2 Bending moments
B(m: n) k_2(m) via_2*k_2(n)' => 'B_1(m; n) B(m; n)/A(m N N v
n)"o a\” :
D e T l‘/x(*’i."):‘lo‘(—) ‘(Z'\a(”“-")'(ZHI‘”“’7)'5b(’“-")>)
T
ers Operators Functions inv hyp Plot Map nm=0 n=0
9 * = | x* sin cc min max e AC Root Repeat 5 '
6|/ || 2| Alx*| cos| sec| md]| re ||z CI|l Sup Inf 571
5.19
3 + < v x tan cot ceil im g < Area Slope 467
4.16
= - 2 @ e log |x| floor phase Sum Product 264 v
2 digits [¥] Substitute Plot: [V] Adaptive [¥/] Shadows: | North ¥ | Palette: Rainbow v | [] Smooth External browser: | Chrome NPOEKTON CODT

This software is suitable for engineers and other professionals that need to perform repetitive

calculations and present them in official documentation such as calculation notes. They can automate

this task efficiently by creating powerful and reliable Calcpad worksheets. It can also help teachers

to prepare calculation examples, papers, manuals, books etc. Students can use it to solve various

problems, prepare homework, PhD theses etc.

Installation

Windows

Installation is performed by the automated setup program calcpad-setup-en-x64.exe. Follow the

instruction of the setup wizard. The software requires a 64-bit computer with Windows 10/11 and
Microsoft .NET Desktop Runtime 10.0.

Page 5 /97

https://calcpad.eu/download/calcpad-setup-en-x64.zip
https://dotnet.microsoft.com/en-us/download/dotnet/10.0

Linux

1. Calcpad is a .NET application, so you need .NET 10.0 to run it on Linux. Use the following com-
mands to install .NET 10.0 runtime:

sudo apt update

sudo apt-get install -y dotnet-runtime-10.0
If you need to uninstall older dotnet versions, run this command before the above ones:

sudo apt remove dotnet*
2. If you do not have Chromium installed, you will need it to download Calcpad and view the re-
ports after calculation. Install it with the following command:

sudo snap install chromium

3. Download the Calcpad setup package from the following
link: https://github.com/Proektsoftbg/Calcpad/releases/download/v7.5.8/Calcpad.7.5.8.deb

Then, install Calcpad, using the following command:
sudo apt-get install -y <path-to-your-downloads-folder>/Calcpad.7.5.8.deb
Instead of <path-to-your-downloads-folder> you must put the actual path, something like this:

sudo apt-get install -y
/home/ned/snap/chromium/3235/Downloads/Calcpad.7.5.8.deb

If you get a message like the one below, please ignore it: N: Download is performed unsandboxed
as root as file '".../Calcpad.7.5.8.deb" couldn't be accessed by user

_apt'. - pkgAcquire:Run (13:
Permission denied)
And that's it. You can start the Calcpad command line interpreter (CLI) by simply typing:

calcpad

You can use it to perform calculations in console mode:

@ ned@NED: ~

Welcome to Calcpad VM command line interpreter v.7.1.3!
Copyright: ©® 2024 by Proektsoft EOQOD.

Commands: NEW OPEN SAVE LIST EXIT RESET CLS DEL RAD GRA SETTINGS LICENSE HELP

Enter math expressions or commands (or type HELP for further instructions):

[1; 2 | 3; 4] = [1 2[3 4]
[5; 6] = [5 6]

ank(A) = 2

et(A) = -2

= lsolve(A; b) = [-4 4.5]

The Linux version does not include any GUI yet, but you can use some advanced code editors like
Notepad++ and Sublime to write Calcpad code and Chromium to view the results. Instructions on

Page 6 / 97

https://github.com/Proektsoftbg/Calcpad/releases/download/v7.5.8/Calcpad.7.5.8.deb

how to install Sublime Text on Linux are provided here:

https://www.sublimetext.com/docs/linux _repositories.html

For Ubuntu, you can use the following commands:

wget -0 - https://download.sublimetext.com/sublimehq-pub.gpg | gpg --dearmor
| sudo tee /etc/apt/trusted.gpg.d/sublimehqg-archive.gpg > /dev/null

sudo apt-get update

echo "deb https://download.sublimetext.com/ apt/stable/" | sudo tee
/etc/apt/sources.list.d/sublime-text.list

sudo apt-get install sublime-text

Then, goto https://github.com/Proektsoftbg/Calcpad/tree/main/Setup/Linux/Sublime and download

the following files:

calcpad.sublime-build
calcpad.sublime-completions
calcpad.sublime-syntax
Monokai.sublime-color-scheme
Copy them to the Sublime Text user package folder:
/home/<user>/.config/sublime-text/Packages/User
Here, <user> must be your actual username. Finally, you can open Sublime Text and Chromium with
the following commands:
subl &
chromium &
Put them side to side. Start a new *.cpd file in Sublime Text or open an example from the
/home/<user>/Calcpad folder. Press Ctrl+B to calculate. If everything is OK, the results will show in

~/Continuous baam.cpd - Sublima Taxt x |3 Calcpad - Chromium =l [EY
File Edit Selection Find View Goto Tools Project Preferences Help v | @ Calcpas
¢ @rFile Jhome/ned/Continuous220beam.htm| L 4 J O & ¢
nalysis continuous beam by force method
>Input data</h4> Results

'Span lengths - H 5
'Number of spans -' L 1
Bending moment diagram - M(x) = Mg(x) + ZMl(;;)X
vector(n)', ' {x.k (first(l; k)) @ k =1 : n} i1

'Coordinates of supports b
1

: 20
\/m /\ /_/\
s of the material -'E a 0 x

'Rectangular section with dimensions:'b = ,
'Area -'A = b*h (0:-22.97
'Moment of inertia

1 2 3 4 5 & 7 8 8 10 11 12 13 14 15 16 17 1§ 19
K4mr [5.944544 kNm 27.693477 kNm -12.225812 kNm 22.905337 kNm]

Mmm =[-36.385161 kNm -30.791735 kNm -17.982859 kiNm]

ny
Shear force diagram - V(x) = Vg(x) + Z \’1(;; J]'?(J'

i=1

20
PlotHeight = 100', 'PlotWidth 0 | ! %

1 2 3 4 5 6 7 8 8 10 11 12 13 14 15 16 17 18 19

GpuControl.CreateCommandBuffer.

[
(chrome:1587): IBUS-WARNING **: 10:29:44.775: Failed to mkdir /home/ Vinax = [10.90371 kN 35.799061 kN 19.269625 kN 28.596572 kN]
ned/snap/chromium/2795/ . config/ibus/bus: Not a directory

"min = [-29.09629 kN -34.200939 kN -10.730375 kN -21.403428 kN]

I _Line 16, Column 28 Tab Sige: 4 Calepad

Finally, if you want to uninstall Calcpad, type the following:

sudo apt-get --purge remove calcpad

Page 7 /97

https://www.sublimetext.com/docs/linux_repositories.html
https://github.com/Proektsoftbg/Calcpad/tree/main/Setup/Linux/Sublime

Licensing and terms of use

This software is free for both commercial and non-commercial use. It is distributed under the MIT
license:

Copyright © 2025 PROEKTSOFT EOOD®

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

The source code is available on GitHub: https://qgithub.com/Proektsoftbg/Calcpad

or in our SourceForge repository: https://sourceforge.net/p/calyx/code/ci/master/tree/

Any scripts, developed with Calcpad are property of the respective authors. They can be used
without additional limitations except those appointed by the authors themselves.
Acknowledgments

This project uses some additional third-party components, software and design. They are re-
distributed free of charge, under the license conditions, provided by the respective authors.

1. The new and beautiful icons are created using icons8.com.

2. The pdf export was made possible thanks to the wkhtmltopdf.org project.

3. Some symbols are displayed, using the Jost* font family by indestructible type*, under the SIL

open font license. Square brackets are slightly modified to suit the application needs.

How it works

The software is quick and easy to use. Just follow these simple steps:
1. Enter text and formulas into the "Code" box on the left.
2. Press F5 or click . to calculate. Results will appear in the "Output” box on the right as a
professionally formatted Html report.
3. Click [Z) to print or [} to copy the output.
You can also export it to Html [}, PDF @3 or MS Word @'] document.

The program can be used in two different modes:
Page 8 / 97

https://github.com/Proektsoftbg/Calcpad
https://sourceforge.net/p/calyx/code/ci/master/tree/
https://icons8.com/
https://wkhtmltopdf.org/
https://indestructibletype.com/
https://scripts.sil.org/cms/scripts/page.php?item_id=OFL_web
https://scripts.sil.org/cms/scripts/page.php?item_id=OFL_web

e Calculator - the source code is available for editing in the left box. After calculations, the
results are displayed into the right box. This mode is suitable for short and simple problems
without complex formatting.

¢ Input Form - the source code is not accessible. Instead, an Html input form is displayed. It
contains input fields for all parameters, required for the calculations. The remaining content
is locked for editing. This mode is more convenient for complex problems with rich formatting,
that are frequently used. It makes clear which are the required input parameters and protects
the source code from accidental damage.

In "Input Form" mode, you need to fill the input data and click the © button. You can create such
a from very easy, directly out of the source code. Just put the "?" symbol wherever you need to
enter a value. Then save the problem as "*.cpd" file. You can find additional information about forms
further in this manual.

Theoretical background

(you can skip this if you find it boring)
How does Calcpad actually work? There is a sophisticated math parser inside, that does most of the

job. First, the source code is scanned, and the sequence of bytes is converted into a list of tokens,
using lexical analysis. Each token is represented by data and type (purpose, role).

Then the parser checks if all tokens are in the correct order. We need to know if the expression is
mathematically correct and can be computed. Otherwise, a comprehensible error message should
be generated. For example, "3 + a /5" is a correct expression and "3 a + / 5" is not. For that purpose,
the standard mathematical notation is represented by a formal language with context-free grammar
and syntax analysis is used.

Arithmetic expressions are usually written in infix notation. It means that each operator is located
between the respective operands (e.g. "5*3 + 2"). The problem is that, unlike humans, computers
are difficult to understand such expressions. The main problems are the operator precedence and
the use of brackets. For example, the above expression makes "17", while "5*(3 + 2)" makes "25".
That is why, the expression is converted into different type of notation, called "postfix" or Reverse
Polish Notation (RPN). It is very easy for a computer to read this one. For example, the expression
"5*(3 + 2)" is written in RPN as "5 3 2 + *". The main advantage is that the order of operations can
be clearly specified without the need for brackets.

There is a simple and powerful algorithm for evaluation of expressions written in reverse polish
notation (RPN). It is used by almost all calculators. However, Calcpad includes additional
functionality for processing parameters, functions, macros, conditional execution, loops, etc.

This was a brief and simple explanation. If you are more curious about these topics, you can find
more information in specialized books, papers or websites. Wikipedia is a good place to start with:

https://en.wikipedia.org/wiki/Parsing

https://en.wikipedia.org/wiki/Lexical analysis

https://en.wikipedia.org/wiki/Context-free grammar

https://en.wikipedia.org/wiki/Shunting-yard algorithm

https://en.wikipedia.org/wiki/Reverse Polish notation

Page 9/ 97

https://en.wikipedia.org/wiki/Parsing
https://en.wikipedia.org/wiki/Lexical_analysis
https://en.wikipedia.org/wiki/Context-free_grammar
https://en.wikipedia.org/wiki/Shunting-yard_algorithm
https://en.wikipedia.org/wiki/Reverse_Polish_notation

Writing code

Enter the code into the "Code" input window. Spacing and indent are maintained automatically.
You can use the computer keyboard or the "Numeric Keypad" below. You can copy text from and
to the input window or any external program (e.g. Word). There is a toolbar above the input window
with some useful editing commands: Copy, Paste, Undo, Redo and Insert Image.

The source code is logically divided into lines, which are numbered automatically. Each expression
should be on a separate line. By exception, it is possible to have several expressions on the same
line, but they must be separated by comments. When you finish the line, press "Enter" to start a
new line. Syntax highlighting is performed automatically. Different code elements are displayed with
different colors depending on their type. For example, comments are colored green, and errors are
colored red. All comments must be enclosed by quotes. They can include both plain text and Html.
You can use Html to add pictures, tables and format the report.

Numeric Keypad

% ©° ' " gafydedn6% 1L kKApuvEiEonmp¢goTU X Yw aA

— Numbers — ———Operators ——— ————Functions———— inv hyp Plot Map
7 8 9 * = | x2 sin cc min max e AC Root Repeat
4 5 6 J # A x* cos sec md re g € Sup Inf
1T 2 3 + < v x¥ tan cot ceil im g < Area Slope

o . = - > @& e log |x| floor phase () Sum Product

The numeric keypad is useful when you work on a tablet or laptop with touch screen. When you
press a button, the respective symbols are inserted at the place of the cursor. The keypad is
separated into four sections: "Numbers", "Operators”, "Functions" and "Other". The "=" key does
not calculate the answer as on simple calculators. This is the assignment operator (e.g. "a = 4"). If

you need to check the equality of two numbers, use the "=" operator (for example, "a = b" means:

"Is a equal to h?"). The "e", "it" and "g" keys insert the respective built-in constants e = 2.7183, 7 =
3.1416 and g =~ 9.8066.

If you don't need the keypad and want to free some space, you can hide it with the & button. Click
again to show the keypad back.

The "C" button deletes the previous symbol and "AC" deletes a whole line. If you double click this
button, you will clear the whole text. If you have done this accidentally, you can use Undo « to
restore.

Moving inside the text

Writing and editing text in Calcpad is not much different than any other Windows program. If you
have some experience in that, you can skip this and go straight to "Expressions".

You can type at arbitrary position inside the text. The place where symbols are inserted is called
“text cursor” (the blinking vertical line "|"). You can change the cursor position by clicking with the
mouse or using the arrows "— — 1 1" from the keyboard. Arrows will move the cursor one symbol

Page 10 / 97

left or right and one line up or down. If you hold the "Ctrl" key and press an arrow, the cursor will
move with a whole word. "Home" and "End" keys will send you to the beginning or the end of the
current line, respectively. If you hold "Ctrl" beforehand, you will go to the beginning or the end of
the entire text.

Selecting text

Most editing commands require you to select some text to which the command will be applied. The
selected text is usually displayed with blue background (it may look different depending on your
system settings). You can select text with the mouse as follows: Press the left mouse button at the
start position of the text to be selected. Hold the button and move the mouse to the end position.
Then release the button. Alternatively, you can click at the start, press Shift and then click at the end.
You can also use the computer keyboard. Hold Shift and press arrows or "Home", "End", "Page Up",
"Page Down".

Deleting text

You can delete a single symbol by pressing the "Delete" ("Del") or "Backspace" ("Bkspc") keys. The
difference is that "Delete"” removes the symbol after the cursor, and "Backspace" - before the cursor.
If you hold "Ctrl" beforehand, you can delete whole words instead of separate symbols. If you need
to delete a larger part of the text, you can select it and press either "Delete" or "Backspace” after that.

Copy

If some part of the text is repeated, you can copy it instead of typing it again. That requires two steps:
"Copy" and "Paste". At the first step (Copy), the selected text is sent to memory called Clipboard. At
the second step (Paste), the text is inserted at the new places. Once copied, you can paste the text at
multiple places.

You can copy the selected text to the Clipboard by pressing "Ctrl+C" or by clicking the [5) button.
Paste

Before you paste a text from the Clipboard you have to position the cursor at the required place.
Then press "Ctrl+V" or the [ﬁ button. You can copy text from Calcpad and paste it to other
programs and vice versa. For example, you can take some formulas from Word, calculate them in
Calcpad and return the results back to Word.

Undo

This command undoes the result from the last editing command and restores the previous state. You
can undo up to 10 steps back. Just press "Ctrl+Z" or click the ® button.

Redo

"Redo" performs in the opposite way to "Undo". It restores a command that has been undone. Redo
must follow immediately the last Undo. If you enter or edit some text meanwhile, you will lose the
ability to redo. Click the #* button to redo.

Find
You can search for a certain text inside the code and replace it with another, if needed. Select the
"Edit/Find" menu, click the f° button or press "Ctrl+F". The "Find And Replace" dialog will appear.

Page 11 /97

L Find And Replace X

Find Replace

Search for: abc v

Replace with: | def v

Direction: All v Selection [_| Match case [| Whole words
Replace ‘ ‘ Replace All | ‘ Find Next | ‘ Close

Enter a word or phrase to search for and click "Find Next". The program starts from the current
position and finds the first occurrence in the selected direction. If the searched phrase is found, it is
highlighted, and the search is stopped. To find the next occurrence, click "Find Next" again. You can
also press "F3" to continue searching even after you close the dialog.

If you need to replace the searched text, click the "Replace" tab and fill in the "Replace with" box.
Then click the "Replace" button. The program will replace the current occurrence and will
automatically move to the next one. If you want to replace all occurrences in the code, click the
respective button instead.

There are several options that affect the search results, as follows:

e Direction: "Up", "Down" and "All". Both "All" and "Down" search towards the end of the
document. The difference is that "All" jumps to the beginning and starts over, after it reaches
the end of the document.

¢ Selection: It works only with the "Replace All" command. You need to make the selection first
and then to display the "Find And Replace" dialog. Then, if you check the "Selection" options,
all the replacements will be made only inside the selected text.

e Match case: If selected, the search will make difference between capital and small letters. By
default, the case is neglected.

¢ Whole words: If selected, the program will search only for sequences that represent whole
words.

Coding aids

Syntax highlighting

Syntax highlighting applies different colors to different components of the programming language:
functions, variables, operators, etc. It runs automatically in the background, each time you edit and
leave the current line. All errors are highlighted in red. The program makes difference between
defined and undefined variables and functions. The color palette is predefined and cannot be
changed. Currently, Calcpad does not support custom styles and themes.

Auto-indentation

The indentation of the separate lines in the code is maintained automatically by the program. All
lines that are inside conditional and loop blocks are indented accordingly. Additionally, you can add
Page 12 /97

spaces at the beginning of each line. Although spacing is also handled automatically, the leading
spaces are not affected.

Auto-complete

When you start typing, the program displays a drop-down list with suggestions that match what you
have just typed. It contains keywords, units of measurement, built-in function and all custom
variables and functions that are defined above the current line. The list is dynamically filtered and
sorted while you are typing. The current suggestion in the list is highlighted. If that is what you need,
just press "Tab" to insert it at the current position. Click on the list to insert some of the other
suggestions. Alternatively, you can press "Down Arrow" to browse the available suggestions and
"Enter" to insert the selected one. If the list is above the current line, press "Up Arrow" instead.

Bracket matching

The program can find the matching opening and closing brackets. If you position the cursor next or
before one of them, both brackets are highlighted. If there is no corresponding bracket, nothing is
highlighted.

Greek letters

You can insert Greek letters by clicking the respective symbol below the code editor. Alternatively,
type the Latin equivalent from the table below and press "Ctrl+G". If you press it again, you will
convert the letter back from Greek to Latin. Since "j"/"J" and "V" remain unused, they are mapped to
"g"/"@" and "4", respectively.

Name greek latin Greek Latin

alpha a a A
beta B b B B
gamma Y o} r G
delta (S d A D
epsilon € e E E
zeta C z Z Z
eta n h H H
theta 0 q C] Q
theta-alt 4 v LS V
iota L i I I
kappa K k K K
lambda A I A L
mu vl m M M
nu v n N N
Xi & X = X
omicron o o @) @)
pi 1 p Mn P

Page 13 /97

rho p r P R
sigma o] S 3 S
tau T t T T
upsilon v u Y U
phi [0} f) F
chi X C X C
psi) y Wy Y
omega w w Q w
phi-diam 7] j %) J

Using Notepad + +

Notepad+ + is a popular text/code editor. It is free and open source and can be downloaded from
the official website https://notepad-plus-plus.org. It supports many programming or scripting

languages. Its text editing capabilities are much more powerful than Calcpad. It is also very useful for
writing Html code. Calcpad syntax can be also used with Notepad+ +. It is predefined as an XML file
that can be inserted in Notepad++. You can do this by selecting the "Language” menu, then click
"Define your language" and then, "Import...". Find the Calcpad folder inside your Program Files
directory or wherever Calcpad is installed and select the file named Calcpad-syntax-for-

Notepad++.xml.

Expressions

The main purpose of Calcpad is to perform calculations. That is why, everything inside the input
window is assumed to be mathematical expressions, unless it is enclosed in quotes. Then it is treated
as comments. By default, each expression has to be in a separate line, e.g.:

2+ 3

5*(3+1)

15/2

You must not add "=" at the end of each expression. This is the assignment operator. It is used to

assign values to variables, e.g. "a = 2". Press the "= button, to see the results in the output window:

2+3 =5
5.(3 +1) = 20
15/2 = 7.5

Alternatively, you can have several expressions in a single line, but they must be separated by
comments, e.g.:

"Length -'a = 3m', Width -'b = 2*@', Height -'c = 5m
On the other hand, if an expression is too long and complex, you can split it into several lines by
adding line continuation operator " " at the end of each line. You can split a line without adding

" always when it ends with an opening bracket: "{", "(", "[" or delimiter: ";", "|", "&", "@", ":" that is
not inside a comment.

Page 14 / 97

https://notepad-plus-plus.org/
https://calcpad.eu/download/Notepadpp.zip
https://calcpad.eu/download/Notepadpp.zip

Each expression can include constants (numbers), variables, operators, functions and brackets. They
must be arranged properly in order to represent a valid expression. The commonly accepted
mathematical notation and operator precedence is used as it is taught in school. Detailed description
of the expression components is provided below.

You can calculate separate unrelated expressions like with simple calculator or write a complete
program that solves a specific problem. You can define variables and assign values to them. Further,
you can use them to define other variables and so on until you reach the final result. You can also
add text, Html and images to create detailed and professional-looking calculation report. You can
save it to a file and use it multiple times to solve similar problems. Below, you can see a sample
program for solving a quadratic equation:

Code Output
1 "Quadratic Equation
2 'arx² + b-x + c = © Quadratic Equation
3 'Coefficients: 5
4 a-2,b-3","c 5 ax +bx+c=0
5 ‘'Discriminant -'D = b"2 - 4%a‘c Coefficients:
6 'Calculation of roots
7 q - -8.5°(b + sign(b)*sqr(D)) a=2,b=3,c=-5
8 x_1-=gq/a Discriminant - D = h? —4-a-c = 3% — 4-2-(-5) =49
9 x 2= c/q|

Calculation of roots

q =-0.5-(b +sign(h)[D) = -0.5-(3 + sign(3)~/49) = -5

M,%,g,Qj
¢ _-5
,\2737—571
Constants
Real

Real constants can be positive and negative integer and decimal numbers. They can include digits
"0" - "9" and decimal point ".". You can also enter numbers as fractions like "3/4". However, the
program will treat them as expressions (division of two numbers). You cannot define numbers in
floating point format: "3.4e+6". You have to use an expression like "3.4*1076" instead.

All constants and variables are internally stored as "double-precision floating point" numbers. Their
values are ranged from -1.7976931348623157E+308 to 1.7976931348623157E+308. If a result is
out of the above interval, the program returns "-co" or "+oo, respectively”. Division by zero gives the
same result, but "0/0" = "Undefined". The smallest positive number is 4.94065645841247E-324.
Smaller values are rounded exactly to 0.

Complex

If you select "Complex” mode, you can use complex numbers in calculations. Otherwise, only real
arithmetic is applied. Each complex number is represented by the ordered couple (a; b), where "a" is
real number, and "b = |b|-i" is called "imaginary". It can be written in so called algebraic form: ta +
bi (e.g. "2 + 3i"). You can also use other forms, such as polar or exponential form, by entering the

respective expressions. In Calcpad, the imaginary unit can be entered either as "i" or as "1i" in case
you have a variable named "i". It is a special number that satisfies the expression i2 = -1.

Page 15 /97

Variables

A variable is defined by its name and value using expressions like "a = 4". The "=" symbol is the
assignment operator. On the left side, only a single variable name is allowed. On the right side, you
can have any valid mathematical expression, e.g. "b = a + 4". A variable "lives" from the place of its
definition to the end of the program. That is why you cannot use a variable before it is defined. This
will raise an error. If you redefine an existing variable with a new value, it will replace the old one and
the new value will be used further on.

Variable names can include small or capital Unicode letters and digits. Names are case sensitive. For
example, "a" and "A4" are different variables. A name must start with a letter or 4. superscripts: " ° " -

9 upnu n+n ow-—-un " non non non non non]

, , , , subscripts: subscripts: "o " - "o ", "L, "2 2 " (" "y ", and other symbols:
wormowma v gy ongyn wen gt The first occurrence of an underscore in a name starts a

subscript. For example, "a_1_1" will be formatted as "a1_1 ". Variables can store either real or complex

numbers (in "Complex" mode).

Operators

The following operators are supported by the Calcpad language:
e Arithmetic:

"I" - factorial;
"A" - exponentiation;
"/" - floating point division;
"\" - integer division;
"+" - force division bar in inline mode and slash in pro mode (//);"®@" - modulo (%%, remainder);
"*" - multiplication;
"-" - subtraction;
"+" - addition;
¢ Relational (comparison):

=" - equal to (==);
"#£" - unequal to (!=);
"<" - less then;

- greater than;

>
<" - less or equal (<=);
">" - greater or equal (>=);
e Logical:
"A" - logical "AND" (&&);
"v" - logical "OR" (|]);
"@" - logical "XOR" (AN);
o Complex:
"2" - phasor Az (<<);

e "="-assignment.

Page 16 / 97

Operator shortcuts

Instead of "=", "#", "<"-and "2", you can use the respective C-style equivalent operators, as follows:
"==", "I=", "<=" and ">=". They will be automatically replaced by the corresponding Calcpad
operators. The shortcut “%%" will be converted to the modulo operator "®@". This is necessary
because "%" is reserved for the percent units. Since this symbol is not very common, it is rendered
as "mod” in the output, e.g. “7 mod 5 = 2", instead of "7 @ 5 = 2". in a similar way, double slash "//"
is a shortcut for division bar "+" operator. Boolean operators also have shortcuts for easier typing:

"&&" for "A" (AND), "||" for "v" (OR) and "~ A" for "@" (XOR).
Operator precedence and associativity

The above operators are listed in the order of their precedence. This is the order they will be
evaluated in an expression. When you have different types of operators in a single expression,
exponentiation will be evaluated first, then division and multiplication, subtraction and addition and
comparison will be the last. When we have a unary minus and exponentiation, the exponentiation is
evaluated first. For example: "-2/2 = -(272) = -4" All relational operators are of equal precedence. If
you need to change the order of evaluation, you can use brackets. For example, "5 + 2-3" makes "11".
If the addition has to be first, write "(5 + 2)-3". You will get "7-3 = 21". Operators with equal
precedence are evaluated from left to right. This is called operator associativity. For example, "3 - 2
+ 1" makes "(3-2) + 1 =2"and not "3 - (2 + 1) = 0". Another good example is "2-3 / 2-:3", which
makes "9" and not "1".

All operators in Calcpad are left-associative (calculations are performed from left to right). The only
exception is exponentiation, which is right-associative. It is performed from right to left, which means
that x~a~b will be evaluated as x2P. However, many hand calculators and spreadsheet software like
Excel use left associativity for exponentiation. In this case x*a”b will be evaluated as x2®. If you need
to have x2°, you will have to add brackets: x*(a*b).

Relational expressions

Relational operators can return only two values: "1" for "true" and "0" for "false". You can use them
in expressions along with arithmetic operators. For example, you can get the greater of two numbers
a and b by the expression: "a*(a > b) + b*(a < b)". But you need to be careful. If you use "<" instead
of "<", for the case of a equal to b, you will get @ + b, which may be not exactly what you want. For
that special purpose, it is better to use the built-in function max(a; b), logical operators or
conditional execution (look further in this manual). Arithmetic operators are of higher precedence
than relational, and both are evaluated before logical ones.

Logical expressions

Calcpad operates only with numerical data and does not have special types for boolean data. Like
relational ones, logical operators also use "1" for "true" and "0" for "false". Any input value, different
than 0, is also assumed to be "true". You can build logical expressions by using logical operators
and/or logical functions (see further in this manual). They work as follows:

"A" (and) returns 1 if both operands are 1 and 0 otherwise;
"V" (or) returns 1 if any of the operands is 1 and 0 if both are 0;

"@" (xor) returns 1 if just one of the operands is 1 and 0 otherwise.

Page 17 / 97

The results from the above operators are presented in the following tables:

And Or Xor
X y XAY X y XVy X y | x®y
0 0 0 0 0 0 0 0 0
0 1 0 0 1 1 0 1 1
1 0 0 1 0 1 1 0 1
1 1 1 1 1 1 1 1 0

Complex arithmetic

All operators support complex numbers except for factorial "!", integer division "\", remainder "@"
and comparison: "<", "<", ">" ">". The evaluation of a complex expression is a little bit more difficult
than real. The rules for the basic complex operations are given below:

e Addition: (a + bi) + (c + di) = (a + ¢c) + (b + d)i;

e Subtraction: (a + bi) - (c + di) = (a - ¢c) + (b - d)i

e Multiplication: (a + bi)-(c + di) = (ac - bd) + (bc + ad)i;

e Division: (a + bi)/(c + di) = (ac + bd)/(c?2 + d2) + (bc - ad)/(c? + d3)i;

Brackets

Brackets are used in two cases: to change the order of calculations and to enclose arguments of
functions. Only round brackets are allowed: "(" and ")". The software checks if the following rules are
satisfied for each expression:

The first bracket in an expression must be a left one;

The count of left and right brackets must be equal;

Only operator or function identifier are allowed before a left bracket;

Right bracket is not allowed after operator or function identifier;

¢ A function identifier always must be followed by a left bracket.
Calcpad uses "smart" bracket insertion while rendering the output. It means that brackets, which are
duplicate or do not affect the order of calculations, are omitted from the output. On the other hand,

there are places where brackets are added for clarity, although not required in the input. It happens
mostly when negative or complex variables are substituted. For example:

e Ifa =-2,then a? = (-2)2 = 4, and not a? = -22. The second case is ambiguous, and the sign can
be applied after the exponentiation which will evaluate to -4. Also, brackets are added to
exponentiation of a complex variable;

e Ifa=-2,thenb=-a=-(-2)=2,andnotb =-a =--2 =2;

e Brackets are also added in the case of multiplication and division to a negative variable: a-b =
2(-3) = §;

e Brackets are required almost every time we have to substitute complex variables: a-b = (2 +
30)-(3 - 2i) =12 + 51

Page 18 / 97

Functions
Library (built-in) functions

Calcpad includes a library with common math functions, ready to use:
e Trigonometric:
sin(x) - sing;
cos(x) - cosine;
tan(x) - tangent = sin(x)/cos(x), for each x # km, k=1, 2, 3..;
csc(x) - cosecant = 1/sin(x), for each x # km, k=1, 2, 3..;
sec(x) - secant = 1/cos(x), for each x # /2 + km, k=1, 2, 3..,;
cot(x) - cotangent = cos(x)/sin(x), for each x # m/2 + km, k=1, 2, 3..,;
e Hyperbolic:
sinh(x) - hyperbolic sine = (e* - e™)/2;
cosh(x) - hyperbolic cosine = (e* + e™)/2;
tanh(x) - hyperbolic tangent = (e* - e™)/(e* + ™);
csch(x) - hyperbolic cosecant = 1/sinh(x);
sech(x) - hyperbolic secant = 1/cosh(x);
coth(x) - hyperbolic cotangent = (e* + e™¥)/(e* - ™), for x # ¢
¢ Inverse trigonometric:
asin(x) - inverse sine, defined for -1 < x < 1;
acos(x) - inverse cosine, defined for -1 < x < 1;
atan(x) - inverse tangent;
atan2(x; y) - the angle whose tangent is the quotient of y and Xx;
acsc(x) - inverse cosecant = asin(1/x);
asec(x) - inverse secant = acos(1/x);
acot(x) - inverse cotangent;
¢ Inverse hyperbolic:
asinh(x) - inverse hyperbolic sine = In(x + v(x? + 1)), defined for -0 < x < +o0;
acosh(x) - inverse hyperbolic cosine = In(x + V(x + 1)-V(x - 1)), defined forx > 1;
atanh(x) - inverse hyperbolic tangent = 1/2-1n[(1 + x)/(1 - x)], for-1<x < 1;
acsch(x) - inverse hyperbolic cosecant = atanh(1/x);
asech(x) - inverse hyperbolic secant = acosh(1/x);
acoth(x) - inverse hyperbolic cotangent = 1/2-1n[(x + 1)/(x - 1)], for|x| > 1;
e Logarithmic, exponential and roots:
log(x) - decimal logarithm (with base 10), for each x > 0;
In(x) - natural logarithm (with base e = 2.7183), for each x > 0;
log_2(x) - binary logarithm (with base 2), for each x > 0;
exp(x) - exponential function = e%;
sqr(x) or sqrt(x) - square root (Vx), defined for each x > 0;
cbrt (x) - cubic root (V):
root (x; 7) - n-th root (Vx);

Page 19 /97

¢ Rounding:
round(x) - rounds to the nearest integer;
floor(x) - rounds to the smaller integer (towards -);
ceiling(x) - rounds to the greater integer (towards +o);
trunc(x) - rounds to the smaller integer (towards zero);
e Integer:
mod (x; y) - the remainder of an integer division;
ged(x; y; z...) - the greatest common divisor of several integers;
lcm(x; y; z..) - the least common multiple of several integers;
e Complex:
re(a + bi) - returns the real part only, re(a + bi) = a;
im(a + bi) - returns the imaginary part as a real number, im(a + bi) = b;
abs(a + bi) - complex modulus = sqrt(a? + b?);
phase(a + bi) - complex number phase (argument) = atan2(a; b);
conj(a + bi) - complex number conjugate = a - bi.
e Aggregate and interpolation:
min(A4; Z; c..) - the smallest of multiple values;
max(A4; Z; c..) - the greatest of multiple values;
sum(A; 77),' c..) - sum of multiple values;
sumsq(A4; 3; c..) - sum of squares;
srss(A4; Z; c..) - square root of sum of squares;
average(4; Z; c..) - average of multiple values;
product(4; 77),' c..) - product of multiple values;
mean(A4; 77),' c..) - geometric mean;
take(n; A; Z; c..) - returns the n-th element from the list;
line(x; A; Z; c..) - performs linear interpolation among the specified values for x;
spline(x; 4; 75; c..) - performs Hermite spline interpolation;
e Conditional and logical:
if(<cond>; <value-if-true>; <value-if-false>) - if the condition cond is satisfied, the
function returns the first value, otherwise it returns the second value. The condition is
satisfied when it evaluates to any non-zero number;
switch(<cond1>; <valuel>; <cond2>; <value2>;..; <default-value>) - returns the value
for which the respective condition is satisfied. Conditions are checked from left to right. If
none is satisfied, it returns the default value in the end;
not(x) - logical "not";
and(x; y; z..) - logical "and";
or(x; y; z..) - logical "or";
xor(x; y; z..) - logical "xor";
e Other:
abs(x) - absolute value (modulus) of a real number | x |;
sign(x) - sign of a number = -1ifx <0; 1ifx > 0; 0ifx = 0;
random(x) - a random number between 0 and x;

Page 20 / 97

getunits(x) - gets the units of x without the value. Returns 1 if x is unitless;

setunits(x; u) - sets the units u# to x, where x can be scalar, vector or matrix;

clrunits(x) - clears the units from a scalar, vector or matrix x;

hp(x) - converts x to its high-performance (hp) equivalent type;

ishp(x) - checks if the type of x is a high-performance (hp) vector or matrix;

e Vector:

o Creational:
vector(n) - creates an empty vector with length #;
vector_hp(n) - creates an empty high performance (hp) vector with length »;
range(xq; X,,; §) - creates a vector with values spanning from x4 to x,, with step s;
range_hp(xq; Xx,; §) - creates a high performance (hp) vector from a range of values;

o Structural:
len(V) - returns the length of vector v;
size(?}) - the actual size of vector v (the index of the last non-zero element);
r‘esize(T/; n) - sets a new length n of vector v;
£ill(V; x) - fills vector v with value x;
join(A4; Z; c..) - creates a vector by joining the arguments: matrices, vectors and scalars;
slice(V; iy; i) - returns the part of vector v, bounded by indexes i and i,, inclusively;
first(v; n) - the first n elements of vector v;
last (7/; n) - the last n elements of vector v;
extr‘act(Tz; z_'>) - extracts the elements from ¥ which indexes are contained in ?

o Data:
sort (?/) - sorts the elements of vector v in ascending order;
rsort (V) - sorts the elements of vector v in descending order;
order (V) - the indexes of vector v by ascending order of its elements;
revorder (V) - the indexes of vector v by descending order of its elements;
rever-se(?z) - a vector containing the elements of Vv in reverse order;
count (?/; X; 1) - number of elements of vector 7/, after the i-th one, that are equal to x;
search(V; x; i)- the index of the first element in v, after the i-th one, that is equal to x;
find(?}; X; 1) or
find_eq(V; x; i) - the indexes of all elements in v, after the i-th one that are = x;
-Find_ne(?»; X; 1) - the indexes of all elements in v, after the i-th one that are # x;
-Find_lt(?»; X; 1) - the indexes of all elements in v, after the i-th one that are < x;
find_le(V; x; i) - the indexes of all elements in v, after the i-th one that are < x;
find_gt(V; x; i) - the indexes of all elements in v, after the i-th one that are > x;
find_ge(V; x; i) - the indexes of all elements in v, after the i-th one that are > x;
1ookup(5; 75; X) or
lookup_eq(a; 79); x) - all elements in a for which the respective elements inb are = X;
lookup_ne(a; Z; x) - all elements in a for which the respective elements in b are # X;
lookup_1t (5; Z; x) - all elements in a for which the respective elements in b are < X;
lookup_le(a; 3; x) - all elements in a for which the respective elements inb are < X;
lookup_gt (a; 3; x) - all elements in a for which the respective elements inb are > X;
1ookup_ge(5; Z; x) - all elements in a for which the respective elements in b are > X;

Page 21 /97

o Math:
norm_1(V) - L1 (Manhattan) norm of vector v:
norm(V) or norm_2(Vv) or norm_e (V) - L2 (Euclidean) norm of vector v;
nor'm_p(T/; p) - Lp norm of vector v,
norm_i(V) - Leo (infinity) norm of vector v,
unit (V) - the normalized vector v (with L2 norm = 1);
dot (a; Z) - scalar product of two vectors a and 3;
cross (?1; 77)) - cross product of two vectors a andz (with length 2 or 3);

e Matrix:

o Creational:
matrix(m; n) - creates an empty matrix with dimensions mxn;
identity(n) - creates an identity matrix with dimensions nxn;
diagonal(n; d) - creates a diagonal nxn matrix and fills the diagonal with value d;
column(m; c) - creates a column matrix with dimensions mx 1, filled with value ¢;
utriang(n) - creates an upper triangular matrix with dimensions nxn;
ltriang(n) - creates a lower triangular matrix with dimensions nxn;
symmetric(n) - creates a symmetric matrix with dimensions nxn;
matrix_hp(m; n) - creates a high-performance empty matrix with dimensions mxn;
identity_hp(n) - creates a high-performance identity matrix with dimensions nxn;
diagonal_hp(n; d) - creates a nxn high-performance diagonal matrix filled with value d;
column_hp(m; c) - creates a mx1 high-performance column matrix filled with value ¢;
utriang_hp(n) - creates a nxn high-performance upper triangular matrix;
ltriang_hp(n) - creates a nxn high-performance lower triangular matrix;
symmetric_hp(n) - creates a nxn high-performance symmetric matrix;
vec2diag(V) - creates a diagonal matrix from the elements of vector v;
veczr‘ow(?)) - creates a row matrix from the elements of vector v;
vec2col(7)) - creates a column matrix from the elements of vector v;
join_cols(_él; 32; 23 ...) - creates a new matrix by joining column vectors;
join_r‘ows(l_f)l,' 72; 173 ...) - creates a new matrix by joining row vectors;
augment(A4; B; C..) - creates a new matrix by appending matrices 4; B; C side by side;
stack(4; B; C...) - creates a new matrix by stacking matrices 4; B; C one below the other;

o Structural:n_rows (M) - number of rows in matrix M;
n_cols (M) - number of columns in matrix M,
mresize(M; m; n) - sets new dimensions m and n for matrix M,
mfill(M; x) - fills matrix M with value x;
fill_row(M; i; x) - fills the i-th row of matrix M with value Xx;
fill_col(M; j; x) - fills the j-th column of matrix M with value x;
copy(A; B; i; j) - copies all elements from A4 to B, starting from indexes i and j of B;
add(4; B; i; j) - adds all elements from A4 to B, starting from indexes i and j of B;
row(M ; 1) - extracts the i-th row of matrix M as a vector;
col(M; j) - extracts the j-th column of matrix M as a vector;
extract_rows (M ; i) - extracts the rows from matrix M whose indexes
are contained in vector i;
Page 22 / 97

extract_cols(M; j) - extracts the columns from matrix M whose indexes
are contained in vector J;
diag2vec (V) - extracts the diagonal elements of matrix M to a vector;
submatrix(M; iy; iy j15 J2) - extracts a submatrix of M, bounded by
rows i4 and i, and columns j; and j, incl,
Data:
sort_cols(M; i) - sorts the columns of M based on the values in row i
in ascending order;
rsort_cols(M; i) - sorts the columns of M based on the values in row i
in descending order;
sort_rows (M ; j) - sorts the rows of M based on the values in column j
in ascending order;
rsort_rows (M j) - sorts the rows of M based on the values in column j
in descending order;
order_cols(M; i) - the indexes of the columns of M based on the ordering
of the values from row i in ascending order;
revorder_cols (M ; i) - the indexes of the columns of M based on the ordering
of the values from row i in descending order;
order_rows (M ; j) - the indexes of the rows of M based on the ordering
of the values in column j in ascending order;
revorder_rows (M ; j) - the indexes of the rows of M based on the ordering
of the values in column j in descending order;
mcount (M ; x) - number of occurrences of value x in matrix M
msearch(M; x; i; j) - vector with the two indexes of the first occurrence
of x in matrix M, starting from indexes i and j;
mfind(M; x) or
mfind_eq(M; x) - the indexes of all elements in M equal to x;
mfind_ne (M ; x) - the indexes of all elements in M not equal to x;
mfind_1t (M ; x) - the indexes of all elements in M less than x;
mfind_le(M; x) - the indexes of all elements in M less than or equal to x;
mfind_gt (M ; x) - the indexes of all elements in M greater than Xx;
mfind_ge (M ; x) - the indexes of all elements in M greater than or equal to x;
hlookup(M; x; iq; i) or
hlookup_eq(M; x; iy; i) - the values from row i, of M, for which the elements in
row iq are equal to x;
hlookup_ne(M; x; iy; i) - the values from row i, of M, for which the elements in
row i; are not equal to x;
hlookup_lt(M; x; iy; i) - the values from row i, of M, for which the elements in
row iq are less than x;
hlookup_le(M; x; iy; i) - the values from row i, of M, for which the elements in
row I; are less than or equal to x;
hlookup_gt(M; x; iy; i) - the values from row i, of M, for which the elements in

Page 23 /97

row i, are greater than x;

hlookup_ge(M; x; iy; i) - the values from row i, of M, for which the elements in
row iq are greater than or equal to x;

vlookup(M; x; ji; j,) or

vlookup_eq(M; x; j1; j,) - the values from column j, of M, for which the elements in
column j; are equal to x;

vlookup_ne(M; x; j1; j,) - the values from column j, of M, for which the elements in
column j; are not equal to x;

vlookup_1t(M; x; j1; j,) - the values from column j, of M, for which the elements in
column j4 are less than x;

vlookup_le(M; x; j1; j,) - the values from column j, of M, for which the elements in
column j are less than or equal to x;

vlookup_gt (M ; x; j1; j,) - the values from column j, of M, for which the elements in
column j; are greater than x;

vlookup_ge(M; x; j1; j,) - the values from column j, of M, for which the elements in
column j; are greater than or equal to x;

Math:

hprod(A4; B) - Hadamard product of matrices 4 and B;

fprod(A4; B) - Frobenius product of matrices A and B;

kprod(A4; B) - Kronecker product of matrices 4 and B;

mnorm_1 (M) - L1 norm of matrix M;

mnorm(M) or mnorm_2(M) - L, norm of matrix M;

mnorm_e (M) - Frobenius norm of matrix M,

mnorm_i (M) - L. norm of matrix M;

cond_1(M) - condition number of M based on the Ly norm;

cond(M) or cond_2 (M) - condition number of M based on the L, norm;

cond_e (M) - condition number of M based on the Frobenius norm;

cond_i (M) - condition number of M based on the Lco norm;

det (M) - determinant of matrix M;

rank (M) - rank of matrix M;

trace(M) - trace of matrix M

transp (M) - transpose of matrix M;

adj (M) - adjugate of matrix M;

cofactor (M) - cofactor matrix of M;

eigenvals (M ; 7.) - the first 7. eigenvalues of matrix M (or all if omitted);

eigenvecs (M ; 1) - the first 7. eigenvectors of matrix M (or all if omitted);

eigen(M; 1¢) - the first 7. eigenvalues and eigenvectors of matrix M (or all if omitted) ;

cholesky (M) - Cholesky decomposition of a symmetric, positive-definite matrix M

lu(M) - LU decomposition of matrix M;

qr (M) - QR decomposition of matrix M;

svd (M) - singular value decomposition of M;

inverse (M) - inverse of matrix M;

Page 24 / 97

1solve(A4; B) - solves the system of linear equations Ax=Db using LDL" decomposition
for symmetric matrices, and LU for non-symmetric;

clsolve(4; 1_5) - solves the linear matrix equation AX = b with symmetric,
positive-definite coefficient matrix A using Cholesky decomposition;

slsolve(4; B) - solves the linear matrix equation AX = b with high-performance
symmetric, positive-definite matrix A using preconditioned
conjugate gradient (PCG) method;

msolve(A; B) - solves the generalized matrix equation AX = B using LDL'
decomposition for symmetric matrices, and LU for non-symmetric;

cmsolve(A; B) - solves the generalized matrix equation AX = B with symmetric,
positive-definite coefficient matrix A using Cholesky decomposition;

smsolve(A; B) - solves the generalized matrix equation AX = B with high-performance
symmetric, positive-definite matrix A using preconditioned
conjugate gradient (PCG) method;

fft (M) - performs fast Fourier transform of row-major matrix M. It must have
one row for real data and two rows for complex;

ift(M) - performs inverse Fourier transform of row-major matrix M.
It must have one row for real data and two rows for complex;

o Double interpolation:

take(x; y; M) - returns the element of matrix M at indexes x and y;

line(x; y; M) - double linear interpolation from the elements of matrix M based on
the values of x and y;

spline(x; y; M) - double Hermite spline interpolation from the elements of matrix M

based on the values of x and .

Arguments must be enclosed by round brackets. They can be constants, variables or any valid
expression. Multiple arguments must be separated by semicolons ";". When arguments are out of
range, the function returns "Undefined". Exceptions from this rule are "cot(0)" and "coth(0)", which
return "+oo".

Arguments of trigonometric functions can be in degrees, radians or grades. The units for angles
can be specified in three different ways:

1. By the radio buttons above the output window (O D, OR, OG).

2. By compiler switches inside the code. You have to insert a separate line containing: #deg for
degrees, #rad for radians or #gra for grades. This will affect all expressions after the current line
to the end or until an alternative directive is found.

o 1 n

3. By attaching native units to the value itself: deg, ° ', ", rad, grad, rev (see the “Units" section,
further in this manual).

Native units are of highest priority, followed by compiler switches in source code. Both override radio
buttons settings, which are of lowest priority.

All functions are also defined in the complex domain, except for mod (x; y), ged(x; y), lem(x; y),
min(x; y) and max(x;).
Logical functions accept numerical values and return “0” for “false” and “1" for “true”. The results for

two arguments (one for “not”) are presented in the following tables:

Page 25 /97

X | not(x) X y | and(x;y) X y |or(x;y) X y | xor(x;y)
1 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 1 1 0 1 1
1 0 0 1 0 1 1 0 1
1 1 1 1 1 1 1 1 0

Any numerical value, different from 0, is treated as 1 (true). Multiple arguments are evaluated
sequentially from left to right, according to the above tables. We start with the first and the second.
Then, the obtained result and the next value are evaluated in turn, and so on.

Rounding of midpoint values with round() evaluates to the nearest integer away from zero. The
floor() function rounds to the smaller value (towards -0). The ceiling() function rounds in the
opposite direction to the larger value (towards +o). Unlike floor(), trunc() rounds towards zero,
which is equivalent to simply truncating the fractional part. Some examples for rounding of negative
and positive numbers are provided in the table below:

Positive Negative
Function X Result Function X Result
round(x) 45 5 round(x) -4.5 -5
floor(x) 4.8 4 floor(x) -4.8 -5
ceiling(x) 4.2 5 ceiling(x) -4.2 -4
trunc(x) 4.8 4 trunc(x) -4.8 -4

Rounding of complex numbers affects both real and imaginary parts.

Custom (user defined) functions

You can define your own functions and use them further in the calculations. Custom functions can
have unlimited number of parameters. They are specified after the function name, enclosed in
brackets "(" ... ")" and separated by semicolons ";". Each function is defined, using the following
format: "f (x; y; z; ...) = expression”, where "f" is the function name and "x", "y" and "z" are function
parameters. On the right side you can have any valid expression including constants, operators,

variables and even other functions, e.g.:

f(x) = x*2 + 2*x*sin(x)

glx;) = £F(x)/(y - 4)
Once defined, you can use a function in any expression by inserting a function call. Just write the
function name and then specify the arguments in brackets, e. g. b = g(a + 2; 3) + 3. Function names
must conform to the same rules as variable names. Arguments can be any valid expressions. You
have to provide as many arguments as the number of function parameters. The life cycle of a function
is from the place of definition to the end of the code. If you define a new function with the same
name, the old one will be replaced. You cannot redefine a library function. For example, sin(x) = x"2
will return an error.

It is not necessary to pre-define the variables that are used for parameters. However, if other variables
are used inside the function body, they must be defined before the first call to the function.
Parameters work as local level variables inside the function body. If a variable with the same name

Page 26 / 97

exists outside the function, a call to that function will not rewrite the value of the global variable. For
example:

If you have a variable "x = 4" and a function "f(x) = x2".
When you call "f(2)", it will evaluate to x2 = 22 = 4, because local x = 2
If you call "x2" after that, it will return x° = 42 = 16, because global x remains 4.

User defined functions support both real and complex numbers.

Plotting

Besides functions, Calcpad provides special commands for advanced operations. They accept
functions and expressions as arguments and perform plotting, iterative solutions and numerical
methods. Their names start with "$" to be distinguished from normal functions. Their parameters
must be enclosed in curly brackets: "{* and "}". Such is the plotting command $Plot. It can plot a
function of one variable in the specified interval. It has the following format:

$Plot{y(x) @ x = a : b} ,where:
y(x) - the function to be plotted. Instead of y(x) you can put any valid expression. It will
be used to calculate the ordinate values;
x - the name of the variable along the abscissa. You can put here only a single name. It is
not required to define the variable preliminary;
a and b are the limits of the interval for the x variable. Instead of @ and b you can put
numbers, variables or any valid expressions.
For example, if you enter: $Plot{x"2 - 5*x + 3 @ x = -1:6}, you will get the following result:
[6; 8]

-2

4

-1 0 1 2 3 4 5 6
[-1; -4.25]

The above command plots only one function of one variable at a time. There are also other formats
that you can use:

$Plot{x(t)|y(t) @t=a:b} - parametric plot: both coordinates are functions of a parameter;
$Plot{y;(x) &y,(x) &..@x =a:b} - multiple: plots several functions on a single graph;

$Plot{x, (1) |y1(?) &x5(1) |y,(t) &..@1=a:b} - multiple parametric;
$Map{f(x; y)@x=a:b&y=c:d} - draws a 2D color map of a 3D surface, defined by f(x;).

Page 27 / 97

The $Plot function must be the first thing on a line. You can have only spaces and tabs before, not
even comments. Otherwise, the program will return an error. Any text after the closing bracket "}"
will be ignored. Plotting supports only real numbers. You can use it in complex mode, only if x and
y are real and the function returns real result along the plotting interval.

You can specify the size of the plot area by defining two variables: PlotWidth and PlotHeight in
pixels. The default values are PlotWidth = 400 and PlotHeight = 250. Plots can be in either in raster
(PNG) or vector (SVG) format. The vector format is usually smaller and faster than the raster one.
However, you may have problems with export to older version of Word or other software that does
not support SVG. You can turn this option on and off by setting the PlotSVG variable to 1 and 0,
respectively. Any nonzero value is equivalent to setting it to one.

Plotting a function requires multiple evaluations. This is performed at uniformly spaced points of a
dense mesh so that to catch any variations of function values. However, if evaluations are
computationally expensive, this approach can be very time-consuming. In such cases, you can use
adaptive plotting. It starts with a coarse mesh and condenses it adaptively to the curvature. Where
the function is smoother, the mesh remains coarser, so that the total number of points is optimal
and much less than for uniform mesh. You can switch adaptive plotting on and off by clicking the
"Adaptive" checkbox or setting the PlotAdaptive variable to 1 and 0, respectively. Adaptive potting
will work for relatively smooth plots with limited number of breaks and jumps. If you have rapidly
oscillating functions, it is possible to miss some peaks, so it is recommended to turn it off.

The $Map function can work with different color palettes. Select the preferred one from the "Palette"
combo box on the bottom of the program window. If you check the "Smooth" checkbox, the coloring
will be displayed as a smooth gradient. Otherwise, the program will display strips. You can also add
3D effects to the graph by selecting the "Shadows" checkbox. You can also specify light direction by
the respective combo. Besides Ul controls, you can specify these options by using variables at
worksheet level, as follows:

PlotShadows - draw surface plots with shadows;
PlotLightDir - direction to light source (0-7) clockwise:
0 - North
1 - NorthEast
2 - East
3 - SouthEast
4 - South
5 - SouthWest
6 - West
7 — NorthWest
PlotPalette - the number of color palette to be used for surface plots (0-9);

0- None

Page 28 / 97

Blues

Blue-yellow

Blue-re

Purple-yellow

PlotSmooth - smooth transition of colors (= 1) or isobands (= 0) for surface plots.
Examples of different plotting methods are provided below:

Parametric Multiple
Equation: r(8) = cos(5/2*0) Equation: y,(0) = cos(0) - sin(0)
$Plot{r(0)*cos(0)|r(0)*sin(0) y,(0) = cos(6) +sin(6)
@0=0:6%n} $P1lot{cos(6) &y, () &y,(0) @0=0:7}
Result: "rose" curve Result: leaf by three trigonometric functions
[1, 0.958] [3.14; 1.41]

y

-1 08 -06 04 -02 0 02 04 06 08 1 0 0.5 1
[-1; -0.958] [0; -1.41]
Multiple parametric Color map
Equation: x(60) =sqr(6f)*cos(6) Equation:

y(0) =sqr(0)*sin(60) f(x; y) =cos(x/3) +sin(y) -sin(x)*cos(y/4)
$PLot{x(0) |y(0) & -x(0) |-y(0) @O =0:3*7} ¢Map{f(x; y) @ x = -15:15 & y = -15:15}
Result: double Fermat spiral Result: 2D waves

[3.07,2.81] [15; 15]
Y 2.8
2.5 2.34
2 1.87
15| 14
1 0.934
0.5 0.466
0 X 0.00132
-0.5 -0.469
y 0936
15 -1.4
2] -1.87
-2.34
2.5
-2.81
3 2 - 0 1 2 3
[-3.07; -2.81]

Page 29 /97

Numerical methods

Calcpad has a built in "Solver" module, which can solve more difficult problems using numerical
methods. It can work only with real numbers but not complex. It includes the following functions:
Root finding

$Root{f(x) = const @ x = a : b}

$Root{f(x) @ x = a : b}
It finds a single root for an equation of type " f(x) = const" within the interval [a, b]. If "const" is zero,
you can omit "= const". The program uses a hybrid bracketing method, which is a combination of

Bisection and Anderson-Bjork's method. It subsequently narrows the interval around the root, until
it gets smaller than the specified precision. It is required that the function "f(x) - const" has opposite
signs at the ends of the interval. According to Boltzano's theorem, if the function is continuous within
the interval, at least one root exists. The bracketing algorithm will find an approximation after a finite
number of iterations.

M S(x)
Yy
Y3
Xo
X1 Xp o XaN\Xa 2
S(x)=0
sign(y;) # sign(y,) Y

With this method, you can find only roots where the function crosses the line at "y = const”. When "
f(x) - const" is entirely positive or negative and only "touches” the line from one side, you cannot
find the root by any bracketing method.

If no roots exist inside the initial interval, the program returns an error. If there are several roots, it
will find only one of them. In such case, it is better to plot the function first. Then, you can see the
approximate location of roots and divide the interval into several parts - one for each root. Finally,
you can call the function several times to find all the roots. In some cases, it is possible to develop
an automated procedure for interval splitting.

Minimum

$Inf{f(x) @ x = a : b}
It finds the smallest value for a function f(x) within the specified interval [a, b]. The golden section
search method is applied for that purpose. If the function contains a local minimum within the
interval, it will be returned as a result. Otherwise, the function will return the smaller of the values at
the ends of the interval: f(a) or f(b). If there are several local minimums, the program will return only

one of them, but not necessarily the smallest one. In such cases, it is better to split the interval. The
value of x where the minimum is found is stored into a variable x;.s. If you use different name for the

argument, instead of x, it will add "_inf" at the end of that name.
Maximum
$Sup{f(x) @ x = a : b}
Page 30 /97

https://iopscience.iop.org/article/10.1088/1757-899X/1276/1/012010

It works like the minimum finding function, but it finds the greatest value instead. The value of x
where the maximum is located is stored in a variable named x,.
Numerical integration
$Area{f(x) @ x = a : b}
It calculates the value of the definite integral of a function f(x) within the specified interval [a, b].

Adaptive Gauss-Lobbato quadrature with Kronrod extension is applied for that purpose (Gander &
Gautschi, 2000).

$Integral{f(x) @ x = a : b}

This command is similar to the above, but it uses the Tanh-Sinh quadrature (Takahasi & Mori, 1974)

which has been additionally improved by Michashki & Mosig (2016) and Van Engelen (2022). Further

improvements have been made in Calcpad by precomputing and caching the abscissas and weights.
This algorithm significantly outperforms $Area for continuous and smooth functions. However, if
the function does not satisfy these requirements, you should not use the $Integral method. Then,
you have two options:

1. Divide the interval [a, b] into smaller parts by using the points of discontinuities, apply the
method for each part separately, and sum up the results;
2. If you are not sure where the discontinuities are, use the $Area method instead.

Numerical differentiation

It finds the value of the first derivative of a real function f(x) at the specified pointx = a. The

geometric representation of derivative is the slope of the tangent to the function at point a. There

are two methods that you can use in Calcpad for that purpose:
$Slope{f(x) @ x = a} - uses symmetric two-point finite difference with Richardson
extrapolation. It evaluates the derivative within the specified Precision. The function must be
locally continuous, smooth and differentiable in the neighborhood of a. It can also contain other
numerical methods. In general, finite differences are susceptible to floating point round-off
errors due to the subtraction of close values. Although Richardson extrapolation can improve
this significantly, the accuracy for poorly behaved functions may be limited.

$Derivative{f(x) @ x = a} - uses complex step method (Lyness and Moler). It evaluates the

derivative with nearly machine precision (10" to 107%) by using the equation:
f'(@) =Im(f(a + ih))/h, whereiis the imaginary unit and h = 10?°. The function must be
holomorphic in the complex plane - infinitely differentiable and locally equal to its Taylor
expansion. Unlike $Slope, it cannot contain other numerical methods and should be defined only
by analytic expressions. This limits the applicability of this method but, when possible, you can
use it instead of $Slope to achieve higher accuracy, if needed.

General considerations

Unlike the plotting command, you can include numerical methods in expressions. They return values
which can be used for further calculations. For example, you can store the result into a variable:

Vpin = $Inf{f(x) @ x = a : b}

Similarly to standard functions, "x" is local for all numerical methods and its global value is not
modified after the method is called.

Page 31 /97

https://www.researchgate.net/publication/226706221_Adaptive_Quadrature-Revisited
https://www.researchgate.net/publication/226706221_Adaptive_Quadrature-Revisited
https://ems.press/content/serial-article-files/41766
https://www.tandfonline.com/doi/epdf/10.1080/09205071.2015.1129915?needAccess=true
https://www.genivia.com/files/qthsh.pdf
https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.1911.0009
https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.1911.0009
https://epubs.siam.org/doi/abs/10.1137/0704019

lterative procedures

There are some other commands that allow you to calculate the result iteratively. Unlike numerical
methods, they can work with complex numbers.

Sum

ssun{f(k) @ k = a : b}
It sums the values of f(k) for all integer k between a and b. The values of k can only grow, so it
should be satisfied that @ < b. Instead of f(k) you can put any valid expression that includes k.

Otherwise, it will simply sum the same value k times. For example, you can use series to calculate
constants. Such is the Leibniz formula for calculation of 1

a*$sum{(-1)*1/(2%k - 1) @ k = 1:1000}= 3.1406
You can also use series to define functions. Of course, they cannot be infinite. The number of

iterations should be sufficient to provide the required precision of the result. The following pattern
can be applied to approximate a function with Fourier series:

f(x) = ag/2 + $sum{a(k)*cos(k*x*n/l) @ k=1:n} + $Sum{b(k)*sin(k*x*n/l) @ k=1:n}

As an example, we can take a straight line within the interval (0; 2*/), withs equation: f(x) = x/(2*/).
The integration constants are a (k) = 0 and b(k) = -1/(k*r). If we plot the Fourier approximation for

n =5, we will get the following result:
(4:1.04)
¥

1
0.8
0.6
0.4
0.2
0 Wi X
0 0.5 1 18 2 2.5 3 35 4
(0; -0.0433)

Product
$Product{f(k) @ k = a : b}
It works like "Sum"”, but it multiplies the terms instead of adding them. For example, you can define
your own factorial function:
F(n) = $Product{k @ k = 1 : n}
You can use it further to calculate binomial coefficients by the well-known formula: C(n; k) = F(n)/(F

(k)*F(n - k)). However, it is much more efficient to define a special procedure that computes the
coefficient directly without using factorials:

$Product{(i + n - k)/i @i = 1:k}
Also, the latter will not overflow together with the factorials for greater values of n.
Page 32 /97

Repeat

$Repeat{f(k) @ k = a : b}
This is a general inline iterative procedure that repeatedly calculates f(k). It can be used for sums
and products instead of the respective procedures, but it is not so efficient. However, there are
expressions that can be calculated only by the "Repeat" command. Normally, such expressions will
make sense if you assign the result to a variable to be used in the next iteration. So, the following
pattern is more likely to be applied in practice:

$Repeat{x = f(x; k) @ k = a : b}

For example, you can use this command to define the Mandelbrot set in a single line:
f(z; ¢) = $Repeat{z = z"2 + c @ [= 1:100}

You should not forget to switch to "Complex" mode. Then you can plot the result:

$Map{abs(f(0; x + 1i*y)) @ x = -1.5:0.5 & y = -1:1}

(0.5; 1.25)
1 ?’.J — 10,37
978
1
9.15
0.75
8,54
0.5
7.94
0.25 753
0 - - " 672
] 6.1
0.25
1 5.5
0.5
1 4.9
0.75
] 4.29
1 = 3.68
1.25 - aar
-2 -1.75 -15 -1.25 -1 -0.75 -0.5 -0.25 0 0.25 0.5
(-2;-1.25)

Expression blocks

An expression block encloses a list of expressions, divided by semicolons. All expressions can assign
to local variables. You can use expression blocks to embed short algorithmic procedures into function
definitions, inline loops or any other expressions and expression blocks. There are two types of
expression blocks that differ only in the way they are rendered in the output:

Page 33 /97

$Block{expri; expr2; expr3; ...} - multiline block of expressions;

$Inline{exprl; expr2; expr3; ...} -inline block of expressions.
As the respective names imply, $Block is rendered on multiple lines so that each expression is placed
on a separate line, and for $Inline all expressions are rendered on a single line sequentially from left
to right.
You can use expression blocks to create multiline functions when a single expression is not sufficient
to evaluate the result. Such is the quadRoots function in the example below that calculates the roots
of a quadratic equation by given coefficients a, b, cand returns them as a vector of two
elements [x;; x..

Code Output
:;iderts(a; b; ¢c) = _ D=b2_4.q-c
ock
D = b*2 - 4*a*c; xl:_b_‘/B
x 1 = (-b - sqrt(D))/(2*a); quadRoots(a; b; c) = b i-a
x 2 = (-b + sqrt(D))/(2*a); X9 :—‘/B
[x_1; x 2]; 2-a
} g x5
quadRoots(2; 3; -5) quadRoots (2; 3; -5) = [-2.5 1]

When you have a $Repeat inline loop you can nest multiple expressions directly inside without
enclosing them with a $block/$inline element. Alternatively, you can use a conditional “while” loop:

$While{condition; exprl; expr2; ...} - iterative expression block with condition.

All expressions inside a block or inline loop are compiled, so that they are executed very fast. They
are evaluated sequentially from left to right and only the last result is returned at the end. However,
unlike the standard expressions you cannot see intermediate results and substituted variables. This
reduces readability and verifiability of calculations. So, expression blocks should be used only where
they are actually needed.

Units

Calcpad provides comprehensive support for physical units of measurement. The current version
supports metric (SI and compatible), US and Imperial units. There are seven basic units that
correspond to the seven physical dimensions:

e mass - kilogram (kg)

e length - meter (m)

e time - second (s)

e electric current - ampere (A)

e temperature - degree Celsius (°C)

e amount of substance - mole (mol)

e luminous intensity - candela (cd)

All other units are derivative and they are obtained by the respective laws of physics. For example,
force = mass-acceleration, so Newton is obtained by N = kg:m/s?. Multiples of units are also
supported by including the respective prefixes before their names. For example, kN = 103 N, MN =
10°N and so on. Additionally, there are some "dimensionless" units like percents, permilles and

Page 34 /97

angles (degrees, radians, etc.) that do not include physical dimensions. However, angles exist in a
special 8-th non-physical dimension, in order not to cancel with or convert to percents when mixed
(which would be weird).

You can attach units to numbers by typing the unit's name after the value, e.g. 15 kg. Then, you can
use them in expressions, just like any other values. Unit cancellation and conversion is performed
automatically during calculations. For example, the following expression will be evaluated as:

1.23 m + 35 cm + 12 mm = 1.59 m(and not: 1.23 + 35 + 12 = 48.23)

The result is usually obtained into the first unit in the expression. If you want to use particular units,

write a vertical bar "|" followed by the target units at the end:

1.23 m + 35 cm + 12 mm | cm

The above expression will be evaluated to 159.2 cm. If you simply want to convert units, just write
the source and the target units, separated by a vertical bar, like:mm | cm or 10 m/s | km/h.

Unit consistency is also verified automatically. For example, you cannot add m and s (e.g. 6 m + 25),
but you can multiply and divide them: 6 m/2 s = 3 m/s.

Arguments for trigonometric, hyperbolic, logarithmic and exponential functions are unitless by
definition. However, you can use units in any custom defined functions, if this makes sense. You can
also attach units to variables. If you specify target units in a variable definition, they will be stored
permanently inside the variable. They will be used further in the calculations together with the
respective value. In the next example, speed is calculated in m/s, but is converted and stored as km/h:

Code Output

'Distance -'s_ 1 = 50m Distance - 5y = 50 7

'Time -'t_1 = 2s Time -1y =2s

'Speed -'V = s 1/t _1|km/h Speed - V = s4/t; = 50 m/2 s = 90 km/h
'What distance you will travel for't_2 = 5s'? |What distance you will travel for 7, = 55?
s_2 = V¥t_2|m sy = Vity =90 km/h'55 =125m

Predefined units
Calcpad includes a large collection of predefined units as follows:
Dimensionless:
e Parts: %, %o, %00, pcm, ppm, ppb, ppt, Ppq;
e Angles: °, ', ", deg, rad, grad, rev;
Metric units (SI and compatible):
e Mass: g, hg, kg, t, kt, Mt, Gt, dg, cg, mg, g, ng, pg, Da (or u);
e Length: m, km, dm, cm, mm, pm, nm, pm, AU, ly;
e Time: s, ms, us, ns, ps, min, h, d, w, y;
e Frequency: Hz, kHz, MHz, GHz, THz, mHz, uHz, nHz, pHz, rpm;
e Speed: kmh;
e Electric current: A, kA, MA, GA, TA, mA, pA, nA, pA;
e Temperature: °C, A°C, K;

Page 35 /97

e Amount of substance: mol;

e Luminous intensity: cd;

e Area: a, daa, ha;

e Volume: L, dal, hL, dL, cL,, mL, pL, nL, pL;

e Force: N, daN, hN, kN, MN, GN, TN, gf, kgf, tf, dyn;
e Moment: Nm, kNm;

e Pressure: Pa, daPa, hPa, kPa, MPa, GPa, TPa, dPa, cPa, mPa, uPa, nPa, pPa,
bar, mbar, pbar, atm, at, Torr, mmHg;

e Viscosity: P, cP, St, cSt;

e Energy work: J, kJ, MJ, GJ, TJ, mJ, puJ, nJ, pJ,
Wh, kWh, MWh, GWh, TWh, mWh, uWh, nWh, pWh,
eV, keV, MeV, GeV, TeV, PeV, EeV, cal, kcal, erg;

e Power: W, kW, MW, GW, TW, mW, uW, nW, pW, hpM, ks,
VA, kVA, MVA, GVA, TVA, mVA, uVA, nVA, pVA,
VAR, kVAR, MVAR, GVAR, TVAR, mVAR, uVAR, nVAR, pVAR;

e Electric charge: C, kC, MC, GC, TC, mC, uC, nC, pC, Ah, mAh;
e Potential: V, kV, MV, GV, TV, mV, uV, nV, pV;
e Capacitance: F, kF, MF, GF, TF, mF, pF, nF, pF;
e Resistance: Q, kQ, MQ, GQ, TQ, mQ, nQ, nQ, pQ;
e Conductance: S, kS, MS, GS, TS, mS, puS, nS, pS, U, kO, MU, GO, TO, m0, no, n0, pU;
e Magnetic flux: Wb, kWb, MWb, GWb, TWb, mWb, uWb, nWb, pWb;
e Magnetic flux density: T, kT, MT, GT, TT, mT, uT, nT, pT;
e Inductance: H, kH, MH, GH, TH, mH, puH, nH, pH;
e Luminous flux: Im;
¢ llluminance: Ix;
e Radioactivity: Bq, kBq, MBq, GBq, TBq, mBq, uBgq, nBq, pBq, Ci, Rd;
e Absorbed dose: Gy, kGy, MGy, GGy, TGy, mGy, uGy, nGy, pGy;
e Equivalent dose: Sv, kSv, MSv, GSv, TSv, mSv, uSv, nSv, pSv;
o Catalytic activity: kat;
Non-metric units (Imperial/US):
e Mass: gr, dr, oz, Ib (or Ibm, Ib_m), kipm (or kip_m), st, qr,
cwt (or cwt_uk, cwt_us), ton (or ton_uk, ton_us), slug;

e Length: th, in, ft, yd, ch, fur, mi, ftm (or ftm_uk, ftm_us),
cable (or cable_uk, cable_us), nmi, li, rod, pole, perch, lea;

e Speed: mph, knot;
e Temperature: °F, A°F, °R;
e Area: rood, ac;

o Volume, fluid: fl oz, gi, pt, gt, gal, bbl, or:
fl 0z_uk, gi_uk, pt_uk, qt_uk, gal_uk, bbl_uk,
fl oz us, gi_us, pt_us, qt_us, gal_us, bbl_us;

Page 36 / 97

e Volume, dry: (US) pt_dry, (US) qt_dry, (US) gal_dry, (US) bbl_gry,
pk (or pk_uk, pk_us), bu (or bu_uk, bu_us);

e Force: ozf (or oz 1), Ibf (or 1b 1), kip (or kipf, kip), tonf (or ton 5), pdl;
e Pressure: osi, osf, psi, psf, ksi, ksf, tsi, tsf, inHg;
e Energy/work: BTU, therm (or therm_yk, therm_us), quad;
e Power: hp, hpE, hpS.
Angle units are accepted by trigonometric functions, and they override all other settings. Inverse

trigonometric functions return unitless values by default. If you want them to return the result in the
current units, you have to define a variable: ReturnAngleUnits = 1.

Literals that follow numbers immediately are parsed as units, e.g. "2 m". Standalone literals can be
either units or variables, e.g. "N*m". The rules for parsing are as follows: If a literal has not been
defined as a variable, it is parsed as a unit. Otherwise, it is parsed as a variable, even if a unit with the
same name exists. If you put a dot before the literal, you will force it to be parsed as a unit, even if a
variable with the same name exists, e.g. ".N*.m".

Custom units

You can define your own "custom" units and use them like any others in your code. Defining a unit
is similar to defining a variable, but the name must be prefixed with a dot ".":
.Name = expression

Names can include some currency symbols like: €, £, £, ¥, ¢, P, X, %, n. If you need to create a unit,
that derive from others, you can write an expression with numbers and units on the right side. You
can also define dimensionless units, like currency (USD, EUR, €, £) or information (bit, byte, KiB, etc),
by specifying "= 1" for the first unit and setting the others as multiples. For example:

bit =1

.byte = 8*bit

.KiB = 1@24*byte

Custom dimensionless units exist in a special (ninth) non-physical dimension. That is how they do
not cancel or convert to other dimensionless units, like percents or angles, when mixed. However, if
you have two types of dimensionless units in a single file, they will exist in the same dimension, so
you should avoid mixing them.

Vectors

Internal implementation and types of vectors

There are two types of vectors in Calcpad: regular (small) and large. Vectors can contain only real
numbers with units. Complex vectors are not supported in this version. A single vector can contain
different types of units, even if not consistent. However, some vector functions or operators may fail
due to units’ inconsistency between separate elements.

Vectors with length that is greater than 100 are created as "large". Externally they behave just as
regular vectors, so the user cannot make any difference. But internally, they operate quite differently.
The structure of a large vector is displayed on the figure below:

Page 37 / 97

length

size

capacity

A vector is defined with its full "mathematical” length, but no memory is initially reserved for it. This

length can be obtained by the Ien(;;) function. The greatest index of a non-zero element defines the

-

internal size of a vector. It is returned by the size(v) function. The rest of the elements are known to
be zero, so Calcpad does not need to store them in memory. Instead, it returns directly zero, if such
an element is accessed.

This allows the software to work efficiently with vectors that are not entirely filled. Such vectors are
very common in engineering as is the load vector in finite element analyses. However, Calcpad
reserves a little bit more memory above the size, that is called "capacity". This is because resizing a
vector is computationally expensive. Since we normally assign elements in a loop, in this way we
avoid resizing the vector on each iteration.

Definition
Vectors can be defined by using the following syntax:
a= [aq a5 as .. a; .. a,]
The values of the separate elements can be specified by expressions that include variables, operators,
functions, etc. For example:
a = [cos(@); 2; 3; 2*2; 6 - 1]'=[12 3 4 5].
You can also include other vectors in the list. Their elements will be included in the sequence at place,
as follows:
b =1[0; a; 6; 7; 81'=[01234567 8]
If you include matrices, they will be linearized to vectors by augmenting all rows one after the other.

Vectors can be also defined as functions that will create them dynamically, depending on certain
input parameters. For example:

a(x) = [1; x; x*2; x"3; x"4]
a(2)'=[12 4 8 16]
Besides square brackets, you can also define vectors by using creational functions, as follows:
a = vector(5)'=[0 0 0 0 0] - creates an empty vector with 5 elements;
fill(a; 5)' =[5 5 5 5 5] - fills the vector with a value of 5;

a = range(0; 10; 2)'=[0 2 4 6 8 10] - creates a vector from a range of values starting
from 0 to 10 with step 2.

Indexing

You can access individual elements of a vector for reading and writing by using indexes. You have to
specify the vector name, followed by a dot "." and the index after that. The first element has an index
of one. The index can be a number, a single variable or expression. In the last case, the expression

must be enclosed by brackets. For example:

Page 38 / 97

a = [2; 4; 6; 8; 10]

a.2'=4

k=3, 'a.k =

-
a3=6

a.(2%k - 1)' =as =10

If an index value is less than 1 or greater than the vector length len (Z)z), the program will return an

error: Index out of range. You can use indexing to initialize vectors inside loops (block or inline). For

that purpose, you must include the loop counter into the index. For example:

a = vector(6)','b = vector(6)

'Block loop

#for k = 1 : len(a)
a.k = kr2

#loop

'Inline loop

$Repeat{b.k = a.(k - 1) @ k = 2 : len(b)}

The above code will produce the following two vectors:

a=1[14916 25 36] and
h=10140916 25].
Structural functions

This includes all functions that read or modify the structure of the vector. It means that the result

does not depend on the content, i.e. the values of elements. The following functions are available in

Calcpad:
len(a)

Parameters:

Return value:
Notes:
Example:

. -
size(a)
Parameters:

Return value:

Notes:

Example:

-
a - vector.

(scalar) the length of vector Zz).

Represents the full length of the vector (in respect to element count).
len([1; 0; 2; 3])'=4

>
a - vector.

. . -
(scalar) the internal size of vector a.

Ifais a large vector, returns the index of the last non-zero element, else -
returns the vector length.

a = vector(200)

a.35 =1

len(a)' = 200

size(a)' =35

size([1; 2; 3; @; @])'=5

Page 39 /97

-
resize(a; n)

R
Parameters: a - vector;

-

n - (positive integer) the new length of vector a.

. -
Return value: the resized vector a.

Notes: Sets a new length n of vector a by modifying the vector in place and

returns a reference to the same vector as a result.

Example: a = [1; 2; 3; 4; 5]
b = resize(a; 3)'=[1 2 3]
a =12 3]

join(A4; Z; C..)

Parameters: a list of matrices, vectors and scalars.

Return value: a new vector, obtained by joining the arguments in the list.

Notes: The list can include unlimited number of items of different types, mixed
arbitrarily. Matrices are first linearized by rows and their elements are
included into the common sequence, as well as the vectors, each at its
place.

Example: A = [1; 2|3; 4]

b =17; 8; 9]
c = join(@; A; 5; 6; b)'=[01234567 8 9]
slice(Z; Iy; 1)

Parameters: d - vector;
i1 - (positive integer) starting index;
I, - (positive integer) ending index.

Return value: a new vector, containing the part of vector & bounded by indexes i1 and i,
inclusively.

Notes: It is not required that iy < i5. If an index is greater than the vector length,

then all remaining elements are returned to the end.
Example: slice([1; 2; 3; 4; 5; 6; 7; 8]; 3; 7)'=[34567]
slice([1; 2; 3; 4; 5; 6; 7; 8]; 6; 10)'=[6 7 8]

. -
first(a; n)
-
Parameters: a - vector;

n - (positive integer) the number of elements to return.

Return value: a vector containing the first n elements of a.

Notes: If n is greater than the length of 21), then all elements are returned.
Unlike resize the original vector is not modified.

Example: first([0; 1; 2; 3; 4; 5]; 3)'=[01 2]
first([0; 1; 2; 3; 4; 5]; 18)'=[01 2 3 4 5]

Page 40 / 97

last(z; n)

Parameters:
Return value:

Notes:

Example:

- o
extract(a; i)

Parameters:

Return value:

Notes:

Example:

Data functions

R
a - vector,
n - (positive integer) the number of elements to return.

-
a vector containing the last n elements of a.

If n is greater than the length of Z, then all elements are returned.
last([0; 1; 2; 3; 4; 5]; 3)'=[3 4 5]
last([0; 1; 2; 3; 4; 5]; 10)'=[012 3 4 5]

-

a - a vector containing the elements to be extracted;

- -
i - a vector with the indexes of the elements to be extracted from a.
- -
a vector with the extracted elements from a which indexes are provided in i.
-
All indexes in i must be positive integers. If an index is greater than the

R
length of vector a, an "Index out of range" error is returned.
a =1[0; 1; 2; 3; 4; 5; 6]

extract(a; [2; 4; 6])'=[1 3 5]

This kind of functions treat the vector contents as numerical data. They are related mainly to sorting,
ordering, searching and counting. Unlike structural functions, the result depends on the element
values. You can use the following functions:

N

sort(a)
Parameters:
Return value:

Notes:

Example:

N
rsort(a)
Parameters:

Return value:
Notes:
Example:

order(Z)

Parameters:
Return value:

Notes:

d .

a - input vector.

a vector containing the elements of Z, sorted in ascending order.
The original content of @ is not modified.

a [4; ©; 2; 3; -1; 1]

b = sort(a)' =[-1012 3 4]

a=[4023-11]

-

a - input vector.

>
a vector containing the elements of @, sorted in descending order.

Similar to sort, the original content of @ remains unchanged.
rsort([4; ©; 2; 3; -1; 1])'=432 10 -1]

-

a - input vector.
-
a vector with indexes, ordered by the elements of a, ascendingly.

Each index in the output vector 7 shows which element in a should be
placed at the current position to obtain a sorted sequence.
Page 41 /97

You can do that by calling extract(Z; ?).
Example: a = [4; 0; 2; 3; -1; 1]

I =order(a)'=[526341]

b = extract(a; i)'=[-1012 3 4]

N
revorder(a)

R
Parameters: a - input vector.

Return value: a vector with indexes, ordered by the elements of ZI), descending.
Notes: The same considerations as for the order function apply.
Example: revorder([4; ©; 2; 3; -1; 1])'=[1 436 2 5]

N
reverse(a)

-

Parameters: a - input vector.
. . - .
Return value: a vector containing the elements of a in reverse order.

Notes: The original content of & remains unchanged.
Example: reverse([1; 2; 3; 4; 5])'=[543 2 1]

nd .
count(a; x; 1)

5
Parameters: a - vector,

X - (scalar) the value to count;

I - (positive integer) the index to start with.

-
Return value: (scalar) the number of elements in a, after the i-th one, that are equal to x.

Notes: If is greater than the length of Z, then zero is returned.
Example: count([0; 1; 2; 1; 4; 1]; 1; 4)'=2

N
search(a; x; i)

Parameters: d - vector;
X - (scalar) the value to search for;
I - (positive integer) the index to start with.

Return value: (scalar) the index of the first element in Z, after the i-th, that is equal to x.
Notes: If 7 is greater than the length of a or the value is not found, zero is returned.
Example: search([0; 1; 2; 1; 4; 1]; 1; 3)'=4
search([0; 1; 2; 1; 4; 1]; 1; 7)'=0
find(a; x; i)
Parameters: d - vector;

X - (scalar) the value to search for;
I - (positive integer) the index to start with.

Return value: a vector with the indexes of all elements in Zz), after the i-th, that are equal to x.

Notes: If i is greater than the length of a or the value is not found, an empty vector

Page 42 / 97

is returned (with zero length).
Example: find([0; 1; 2; 1; 4; 1]; 1; 2)'=[2 4 €]
find([0; 1; 2; 1; 4; 1]; 3; 2)' =]

'Lookup(a; Z; X)

The find

_> .

Parameters: a - vector with reference values;
b - vector with return values;
X - (scalar) the value to look for.

Return value: a vector with all elements in 3, for which the corresponding elements

in a are equal to x.
Notes: if the value is not found, an empty vector is returned (with zero length)
Example: a=1[0; 1; 0; 0; 1; 1]

b =1[1; 2; 3; 4; 5; 6]

lookup(a; b; 0)'=[1 3 4]

lookup(a; b; 2)' =1

and lookup functions have variations with suffixes. Different suffixes refer to different

comparison operators. They replace the equality in the original functions while the other behavior

remains unchanged. The possible suffixes are given in the table below:

suffix find lookup comparison operator
_€q find_eq(a; X; 1) 1ookup_eq(3; 3; x) |=-equal
_he find_ne(Z; X3 0) 1ookup_ne(Z; b; x) |# - notequal
_1t |find_lt(a; x; i) |lookup_lt(a; b; x) |< - lessthan
_le |find_le(a;x;i) |lookup_le(a; b;x) |< - lessthan orequal
_8t |find_gt(a; x; i) |lookup_gt(a;b;x) |> - greater than
_ge find_ge(a; x; 1) 1ookup_ge(3; b; x) |2 - greater than or equal

Math functions

All standard scalar math functions accept vector arguments as well. The function is applied separately

to each of the elements in the input vector and the results are returned in a corresponding output

vector. For example:
sin([@; 30; 45; 90])'=[0 0.5 0.707 1]

Calcpad also includes several math functions that are specific for vectors:

norm_p(Zz))

>
Parameters: a - vector.

Return value: scalar representing the L, norm of vector a.

Notes: The Lp norm is obtained by the formula: ||d||, = (Z?=1|ai|p)1/p.

Example: norm_p([1; 2; 3]; 3)'=3.3019

Page 43 /97

norm_l(Zz))
Parameters: a - vector.
Return value: scalar representing the Ly norm of vector a.
Notes: The L4 norm is obtained by the formula: ||@ll; = Y-, a; V.

Example: norm_1([-1; 2; 3])'=6

- - -
norm(a) ornorm_2(a) ornorm_e(a)
-

Parameters. a - vector.

Return value: scalar representing the L, (Euclidian) norm of vector Ez).

Notes: The L, norm is obtained by the formula: [|dl, = [%%, a?.
Example: norm_2([1; 2; 3])' = 3.7417
-
norm_i(a)

N
Parameters: a - vector.

>
Return value: scalar representing the L, (infinity) norm of vector a.

Notes: The L, norm is obtained by the formula: || a lo = max | a; |.
Example: norm_i([1; 2; 3]; 3)'=3
-
unit(a)

Parameters: a - vector.

Return value: the normalized vector a (with Ly, norm || a > =1).

Notes: The elements of the normalized vector & are evaluated by the expression:
u;=a;/ llall,

Example: unit([1; 2; 3])' =[0.26726 0.53452 0.80178]

dot (a; b)

Parameters: 4, b - vectors.

Return value: scalar representing the dot product of both vectors a- B;

Notes: The dot product is obtained by the expression: a-b Yiia; b

Example: a = [1; 2; 4]

b = [5; 3; 1]
dot(a; b)' =15
cross(Z; Z)

Parameters: a, b - vectors.

Return value: vector representing the cross productz =a x b,

Notes: This function is defined only for vectors with lengths 2 or 3.The elements of
the resulting vector ¢ are calculated as follows:
ci=a,bz-azby, cy;=a3by-ayby; c3=ayb,-a, by

Example: a = [1; 2; 4]

b = [5; 3; 1]
cross(a; b)' =[-10 19 -7]

Page 44 / 97

Aggregate and interpolation functions

All aggregate functions can work with vectors. Since they are multivariate, each of them can accept
a single vector, but also a list of scalars, vectors and matrices, mixed in arbitrary order. In this case,
all arguments are merged into a single array of scalars, consecutively from left to right. For example:

a = [0; 2; 6]

b = [5; 3; 1]

sum(10; a; b; 11)' =38

Interpolation functions behave similarly, but the first argument must be scalar, that represents the
interpolation variable. For example:
take(3; a)'=6
line(1.5; a)' =1
spline(1.5; a)' =0.8125
Like aggregate functions, interpolation functions also accept mixed lists of arguments, as follows:
a = [1; 2; 3]
b = [5; 6; 7; 8]
take(7; a; 4; b; 9; 10)' =7
The returned value is actually the third element in vectorz, but it has an index 7 in the final sequence.

A full list of the available aggregate and interpolation functions is provided earlier in this manual (see
"Expressions/Functions" above).

Operators

All operators can work with vector operands. Operations are performed element-by-element and the

results are returned in an output vector. This applies also for the multiplication operator. For example:
[2; 4; 5]*[2; 3; 4]'=1[4 12 20]

If the lengths of both vectors are different, the shorter vector is padded with zeros to the length of

the longer one. Dot and cross products in Calcpad are implemented as functions (see above). All

binary operators are supported for vector-scalar and scalar-vector operands in a similar way. For
example:

[2; 4; 5]*2'=[4 8 10]
Matrices

Internal implementation and types of matrices

Calcpad includes different types of matrices: general (rectangular) and special (column, symmetric,
diagonal. upper/lower triangular). Internally, each type is implemented in a different way that benefits
from the specific structure for better efficiency. Externally, all of them behave in a similar way, except
for a few cases.

Each matrix type is implemented as an array of vectors, as displayed on the figure below. Vectors
normally represent matrix rows, except for diagonal and column matrices.

Page 45 /97

[¢] [e[e]ee]e]ele .
L Zero a |o[e[e]e]e) Zero
® a olo|ojoje|o|e] | o|e|e
D a ofefe ele|e
-— a olejefe oele
N o] olefefe]e ole[eefe]e]
L N @] = |elele elee|e o
C—| | r; olele olejefofe| | = 1.
eelee]e ole|e |
| ole[e]e olefe]
- o|o|o|e|0|e| |
LACIE] elele|e |
elo 0 oo
elele
Zero ZET0 o3 : : : : : QoDooooonl
| | D olo(e(e[e][e[e[o]e|e|o] |
a) b) c) d)
F ole(e[e|e|e]e o000 000000ao
00000 00000000 000o0onn
olo|eje|e]e] | ole(e|o/e(o|oe/e(e|o(as|e[e]e
|o|e|ejojo|eje] | | | | | olefe — 000000000000
olefe]e Iy —+|e|e[e/eje[e[e|e e/eje/e/e/ee e
o(ejefe]e o(ejo[e[e|o[o[o/es][e]ee]e
e) ele|e oojo/ejo|e/e]e/e/e[a(e/e|e|ee
= |e]e]e oloje[o[o/e[e[oo]e[e|e]e
r,—~lelejeje|e oeojo[e(e|o]o]eee]e
olefe]e
o|e|e|e]e]e g)
olele
olele
. ele|e
symmetric ele
°
f)

Calcpad uses large vectors to contain the values. So, it does not store the extra zero elements for
partially filled (banded) matrices. The indexing operator for each type is internally redefined in order

to return directly zero when we try to read a value outside the matrix structure or bandwidth.
a) diagonal matrix - Mli,j] =d[i],ifi =jand 0, if i # J;

b) column matrix - MT[i, j] = c[il, ifj = 1, otherwise — error;

c) upper triangular matrix - M[i,jl =rilj — i+ 1], ifj > i, otherwise — 0;

d) lower triangular matrix - M[i, j1 = r;[j], if j < 7, otherwise — 0;

e) row matrix - M[i, j] = r[j], ifi = 1, otherwise — error;

MIi,jl=rj —i+1],if i = j, otherwise = r;[1 —j + 1];

M, j1 = rilj];

If we try to write a non-zero value outside the matrix structure, we will get an "Index out of range"

f) symmetric matrix -

g) rectangular matrix -

error. For example, you cannot assign a non-zero value to an element outside the main diagonal of
a diagonal type of matrix.

Definition

Similar to vectors, you can define matrices by using the "square brackets" syntax, but the rows must
be separated by vertical bars " | , as follows:

i Al

Axn =@ @i i G | Qo1 Qi s Ao | o | Qg G

In this way, you can create only general (rectangular) types of matrices. For special types of matrices,
you have to use the respective creational functions as described further in this manual. If you have
rows with different lengths, the number of columns 7 is assumed to be the maximum number of
elements in a row. The missing elements in other rows are assumed to be zero. For example:

Page 46 / 97

A4 = [1]|2; 3|4; 5; 6]|7; 8]'=

PN
tlw o

0
0
6
780
You can use expressions for matrix elements that contain variables, operators, functions, vectors,
other matrices, etc. For example, the following code will create a matrix of three rows by applying a
different expression for each row on a single vector:
a = [1; 2; 4]
1 2 4]

A = [a|2*a + 1|3*a + 2]' = [5 5 9
8 8 14

Just like vectors, matrices can also be defined as functions to create them dynamically on demand.
The following function generates a 4x4 Vandermonde matrix from a vector containing the elements
for the first column:

A(x) = transp([x?0|x|x*2|x*3|x"4])

x = [1; 25 3; 4]

111 1 1
B 112 4 8 16
A=A =113 9 27 g
1 4 16 64 256
Indexing

You can use indexing to access individual matrix elements for reading and writing their values. Similar
to vectors, this is performed by the dot operator, but you have to specify two indexes, as follows:
A.(i; J), where:
i - the index of the row where the element is located,
J - the index of the column.

Indexes must be enclosed in brackets and divided by a semicolon. Row and column numbering start
from one. For the Vandermonde matrix from the above example:

A.(3; 2)' =3.
You can have expressions inside the brackets to calculate the indexes in place:

1=2', 'J =3

A.(2% - 1; j + 1) A3 4=27.
In this way, you can iterate through matrix elements in a loop and include the loop counters in the
respective indexes. You can use both inline and block loops for that purpose. The code below creates

a Vandermonde matrix from vector)_c) with the specified number of columns (6):

x = [1; 2; 3; 4]
A = matrix(len(x); 7)
#hide
#for i = 1 : n_rows(A)

#for j = 1 : n_cols(4)

A.(i; j) = x.i~(§ - 1)

#loop

#loop

Page 47 / 97

#show

11 1 1 1 1

2 4 8 16 32 64
3 9 27 81 243 729
1 4 16 64 256 1024 4096

The inline equivalent of the above loop is the following:

$Repeat{$Repeat{A4.(i; j) = x.i*(j - 1) @ j =1 : n_cols(A)} @i =1 : n_rows(A)}

[EENN

A =

Creational functions

The "square brackets" syntax is very powerful and flexible for creating small matrices with predefined
sizes. However, it also has a lot of limitations. For example, it cannot create special types of matrices
and cannot specify the matrix dimensions. That is why, Calcpad also includes various functions for
creating matrices, as follows:

matrix(m; n)
Parameters: m - (positive integer) number of rows;

n - (positive integer) number of columns.
Return value: an empty rectangular matrix with dimensions mxn.

Notes: m and n must be between 1 and 1 000 000. This also applies to all other
kinds of matrices below.
0000
Example: matrix(3; 4)' = [0 00 0]
00O0O
identity(n)

Parameters: n - number of rows/columns.

Return value: an identity matrix with dimensions nxn.

Notes: Represents is a diagonal matrix, filled with one along the main diagonal.
This function is equivalent to diagonal(# ; 1).

100
Example: identity(3)'=(0 1 0
001
diagonal(n; d)
Parameters: n - number of rows/columns;

d - the value along the main diagonal
Return value: an nxn diagonal matrix, filled with value d along the main diagonal.

Notes: It is internally different and more efficient than an nxn symmetric matrix.
200

Example: diagonal(3; 2)'= [0 2 O]
0 0 2

column(m; c)
Parameters: m - number of rows;
¢ - a value to fill the matrix with.
Return value: an mx1 column matrix, filled with value c.
Notes: It is internally different and more efficient than an mx1 rectangular matrix.

2
Example: column(3; 2)' = [2]
2

Page 48 / 97

utriang(n)

Parameters:
Return value:
Notes:
Example:

ltriang(n)

Parameters:
Return value:
Notes:
Example:

symmetric(n)
Parameters:

Return value:
Notes:

Example:

vec2diag (T/))
Parameters:
Return value:

Notes:

Example:

N

vec2row(v)
Parameters:
Return value:

Notes:

Example:

n - number of rows/columns.
an empty upper triangular matrix with dimensions nxn.
It is internally different and more efficient than a general nxn matrix.
U = utriang(3)
111
mfill(U; 1)'=10 1 1
001

n - number of rows/columns.

an empty lower triangular matrix with dimensions nxn.

It is internally different and more efficient than general nxn matrix.
L = 1triang(3)

100
mfill(L; 1)'=]1 1 0
111

n - number of rows/columns.
an empty nxn symmetric matrix.

It is internally different and more efficient than general nxn matrix. Only the
filled side of the upper-right half of the matrix is stored, forming a skyline
structure. If you change a value on either of both sides also changes the
respective value on the other side, keeping the matrix always symmetric.

A = symmetric(4)

A.(1; 1) =5", "A.(1; 2)

A.(2; 2) =3", "A.(2; 3) =
A.(4; 2) =1', 'A.(4; 4) =
5400
.4 321
4= 0200
0101

- . . .
v - a vector containing the diagonal elements.
. . -
a diagonal matrix from the elements of vector v.

-
The size of the matrix is equal to the number of elements in v.

100
vec2diag([1; 2; 3]'=10 2 0
0 0 3

nd . . .

v - a vector containing the elements of the row matrix.
. g

a row matrix from the elements of vector v.

The number of columns of the matrix is equal to the size of v.
vec2row([1; 2; 3]'=[1 2 3]
Page 49 / 97

R

vec2col(v)
Parameters:
Return value:

Notes:

Example:

. . -
join_cols(cq;

Parameters:

Return value:
Notes:

Example:

- .. ;

v - a vector containing the elements of the column matrix.
. -

a column matrix from the elements of vector v.

The number of rows of the matrix is equal to the size of v.

1
vec2col([1; 2; 3]'= [2]
3

- -
Cp;C3 vvu)

- S o

Cq, Cp, C3 ... - vectors.

a new rectangular matrix, obtained by joining the column vectors.

You can specify arbitrary number of input vectors with different lengths.
The number of rows is equal to the maximum vector length and the other
columns are filled down with zeros to the end. The vectors are joined

sequentially from left to right.
147 10
join_cols([1]; [4; 5; 6]; [7; 8], [10; 11; 12]'=[0 5 8 11]
0 6 0 12

. - - -
join_rows(rq; 73 r3...)

Parameters:

Return value:
Notes:

Example:

augment(A4; B;
Parameters:

Return value:
Notes:

Example:

> 5 o

71, ¥ I'3... - vectors.

a new rectangular matrix, which rows are the specified vector arguments.
You can have an arbitrary number of input vectors with different lengths.
The number of columns is equal to the maximum vector length. The other
rows are filled up with zeros to the end. The vectors are collected from left

5 10

to right and arranged into rows from top to bottom.
1

join_rows([1; 2; 3; 4]; [6; 7; 8; 9; 19]':[6

2 3
7 8
C...)

A, B, C ... - matrices.

a rectangular matrix obtained by joining the input matrices side to side.
You can specify arbitrary number of input matrices with different number of
rows. The largest number is relevant, and smaller matrices are filled down
with zeros to the end. Matrices are joined sequentially from left to right. If

the arguments contain vectors, they are treated as columns.

A = [1; 2|3; 4]
B = [1; 2; 3]|4; 5; 6|7; 8; 9]
c = [10; 11; 12; 13]
1212 3 10
D = augment(A4; B; c¢)' = g g Z7L g g g
0 00O0O0 13

Page 50 / 97

stack(4; B; C ...)

Parameters:
Return value:
Notes:

Example:

A, B, C ... - matrices.

a rectang. matrix, obtained by stacking the input matrices one below the other.
You can specify an arbitrary number of input matrices with different row
lengths. The largest number is relevant, and smaller matrices are filled up

with zeros to the end. Matrices are joined sequentially from top to bottom. If
the arguments contain vectors, they are treated as columns.

A = [1; 2|3; 4]
B = [1; 2; 3|4; 5; 6]7; 8; 9]
c = [10; 11]

D = stack(4; B; c¢)'=

OO ®UITN BN
cCovowoo

r 1
_ =
HO\I-PHUJH

Structural functions

Structural functions are related only to the matrix structure. Unlike data and math functions, the

result does not depend much on the values of the elements.

n_rows (M)
Parameters:
Return value:
Example:

n_cols (M)
Parameters:
Return value:
Example:

mresize(M; m;

Parameters:

Return value:
Notes:

Example:

M - matrix.
the number of rows in matrix M.
n_rows([1; 2|3; 4]|5; 6])' =3

M - matrix.

the number of columns in matrix M.

n_cols([1|2; 3|4; 5; 6])' =3

n)

M - the matrix to be resized;

m - the new number of rows;

n - the new number of columns.

the matrix M resized to m rows and n columns.

If the new dimensions are larger, the added elements are initialized with
zeroes. If smaller, the matrix is truncated. If the new dimensions are
compatible to the matrix type, then the original matrix is resized in place
and a reference to it is returned. Otherwise, a new rectangular type of

matrix is returned with the specified dimensions and the original matrix
remains unchanged.

1 2 3
A = [1; 2; 3|4; 5; 6|7; 8; 9]':[4 5 6]—generaltype.
789
B) o v 123 0]
B = mresize(4; 2; 4)' = 156 0] also a general type.

Page 51 /97

A = [1 23 0] - the original matrix was changed.

4560
500
A = diagonal(3; 5)'= [0 5 Ol—diagonaltype.
0 05
B = mresize(4; 2; 4)'= g (5) 8 8]—generaltype.
500
A = [0 5 Ol—the original matrix remains unchanged.
0 05

mfill(M; x)
Parameters: M - the matrix to be filled;
x - the value to fill the matrix with.
Return value: the matrix M filled with value x.
Notes: The matrix M is modified in place and a reference to it is returned. This
function is structurally compliant. Special matrices are filled only in the
designated area, preserving the type.

— 5 . [1 1 1
B = mfill(4; 1) _[1 h 1]
_J1 1 1
i _[1 11
2000
L = mfill(1ltriang(4); 2)'= ; ; g 8
2222

fill _row(M; i; x)

Parameters: M - the matrix which row is to be filled;

I - the index of the row to be filled;
x - the value to fill the row with.

Return value: the matrix M with the i-th row filled with value x.

Notes: The matrix M is modified in place and a reference to it is returned. This
function is structurally compliant. Special matrices are filled only inside the
designated area, preserving the type.

Example: A = matrix(3; 4)

00O0O0
fill row(4; 2; 1)'=[1 1 1 1
0000
L = utriang(4)' - upper triangular matrix;
$Repeat{fill row(L; k; k) @ kK = 1 : n_rows(L)}
111
0 2
00
00
fill_col(M; j; x)

L' = - the lower triangle remains unchanged.

S WN
-PUJNP—*l

Parameters: M - the matrix which column is to be filled;
J - the index of the column to be filled;
X - the value to fill the column with.

Page 52 / 97

Return value: the matrix M with the j-th column filled with value x.

Notes: The matrix M is modified in place and a reference to it is returned. This
function is structurally compliant. Special matrices are filled only inside the
designated area, preserving the type.

Example: A = matrix(3; 4)

[0 1 0 O]
fill col(4; 2; 1)'=|0 1 0 0
0 1 0 0.
B = symmetric(4)' - symmetric matrix.
[0 0 0 O]
£i L4, 101 11
ill col(B; 2; 1)'= 0100 - the symmetry was preserved.
[0 1 0 O

copy(4; B; i J)

Parameters: A - source matrix;
B - destination matrix where the elements will be copied;
i - starting row index in matrix 5B;
J - starting column index in matrix B.

Return value: the matrix B, after the elements from A4 are copied, starting at indexes i and
jinB.

Notes: Copying the elements from A to B modifies the matrix B in place. The
existing elements in B are replaced by the respective elements from 4. A
reference to B is returned as result.

Example: A = [1; 2; 3|4; 5; 6]
-1 -1 -1 -1
B = mfill(matrix(3; 4); —1)'=[—1 -1 -1 —1]
-1 -1 -1 -1

copy(4; B; 1; 1)
copy(4; B; 25 2)
1 23 -1
B' = [4 12 3]
-1 45 6
add(4; B; i; j)
Parameters: A - source matrix;
B - destination matrix where the elements will be added;
i - starting row index in matrix 5B;
J - starting column index in matrix B;
Return value: the matrix B with the added elements from A to the respective elements in B
starting at indexes i and j in B.
Notes: Adding the elements from 4 to B modifies the matrix B in place. A reference
to B is returned as result.

Example: A = [1; 2; 3|4; 5; 6]
-1 -1 -1 -1
B = mfill(matrix(3; 4); -1)':[—1 -1 -1 —1]
-1 -1 -1 -1

add(4; B; 1; 1)

Page 53 /97

add(4; B; 2; 2)
0 1 2 -1
B'=(3 57 2
-1 3 4 5
row(M; i)
Parameters: M - matrix;
i - the index of the row to be extracted.
Return value: the i-th row of matrix M as a vector.

Notes: The full width row is returned, even for special matrices.
12 3
Example: A = [1; 2; 3|4; 5; 6]7; 8; 9]1'=(4 5 6
7 89

row(A; 3)' =[7 8 9]
col(M; j)
Parameters: M - matrix;

J - the index of the column to be extracted.
Return value: the j-th column of matrix M as a vector.

Notes: The full height column is returned, even for special matrices.
123

Example: A = [1; 2; 3|4; 5; 6]7; 8; 9]1'=(4 5 6
7 89

col(4; 2)'=[2 5 8]

>
extract_rows(M; i)
Parameters: M - matrix;
7 - vector containing the indexes of the rows to be extracted.

>
Return value: a new matrix containing the rows of matrix M whose indexes are in vector i.

Notes: The rows are extracted in the order, specified in vector ? It can be a result
from the order_rows function.
1 2 3
Example: A = [1; 2; 3|4; 5; 6|7; 8; 91'=14 5 6
7 89

1 2 3
extract_rows(A4; [1; 2; 1])'=(4 5 6
1 2 3

-
extract_cols(M; j)
Parameters: M - matrix;
]T)- vector containing the indexes of the columns to be extracted.

-
Return value: a new matrix containing the columns of M whose indexes are in vector ;.

Notes: The columns are extracted in the order, specified in vectorﬁ It can be a
result from the order_cols function.
1 2 3
Example: A = [1; 2; 3|4; 5; 6|7; 8; 91'=14 5 6
7 89

Page 54 / 97

321
extract_cols(A4; [3; 2; 1])'=[6 5 4]
9 8 7

diag2vec(M)
Parameters: M - matrix.
Return value: a vector containing the diagonal elements of M.

Notes: The matrix M is not required to be square.
12 0
. _13 4 0
Example: A = [1; 2|3; 4|5; 6; 7|8; 9; 10]' = e 7
8 9 10

diag2vec(A4)' =[1 4 7]
submatrix(M; iy; iy Jji3 Jo)

Parameters: M - matrix;
i1 - starting row index;
I, - ending row index;
J1 - starting column index;
J» - ending column index.

Return value: a new matrix containing the submatrix of M bounded by rows i; to i, and
columns j; to j,, inclusive.

Notes: Starting indexes can be greater than ending indexes. However, the same
part of the matrix is returned. The result is always a general (rectangular)
type of matrix, even if the source matrix is special.

Example: A =1[1; 2; 3; 4| _

5, 65 7; 8| _
9; 10; 11; 12| _
13; 14; 15; 16]

submatrix(A4; 2; 3; 2; 4)'= [160 171 182]

Data functions
Data functions are not related to the structure of matrices but to the values of the elements. The
following functions are available for use:
sort_cols(M; i)
rsort_cols(M; i)
Parameters: M - the matrix to be sorted;

I - the index of the row on which the sorting will be based.
Return value: a new matrix with the columns of M, sorted by the values in row i.

Notes: sort_cols sorts in ascending order, and rsort_cols - in descending order.
The original matrix is not modified.
523
Example: A = [5; 2; 3|4; 9; 1]|6; 8; 7]1'=14 9 1
6 8 7

Page 55 /97

352
B = sort_cols(A4; 2)'= [1 4 9]
7 6 8
253
C = rsort_cols(4; 2)'= l9 4 1]
8 6 7
52 3
A' = [4 9 1]—the original matrix is unchanged.
6 8 7

sort_rows(M; j)
rsort_rows (M ; j)
Parameters: M - the matrix to be sorted;
J - the index of the column on which the sorting will be based.
Return value: A new matrix with the rows of M, sorted by values in column ;.

Notes: sort_rows sorts in ascending order, and rsort_rows sorts in descending
order. The original matrix is not modified.
523
Example: A = [5; 2; 3|4; 9; 1|6; 8; 7]'=[4 9 1]
6 8 7
523
B = sort_rows(A4; 2)'= [6 8 7]
4 91
4 91
C = rsort_rows(A4; 2)' = [6 8 7]
523
523
A' = [4 9 1]— the original matrix is unchanged.
6 8 7

order_cols(M; i)
revorder_cols(M; i)

Parameters: M - the matrix to be ordered;

I - the index of the row on which the ordering will be based.

Return value: a vector containing the indexes of the columns of matrix M ordered by the
values in row 1.

Notes: order_cols returns the indexes in ascending order, and revorder_cols - in
descending order. The matrix is not modified. Each index in the output
vector 7 shows which column in M should be placed at the current position
to obtain a sorted sequence in row i. You can get the sorted matrix by
calling extract_cols (M ; 7).

52 3
Example: A = [5; 2; 3|4; 9; 1]|6; 8; 7]1'=14 9 1
6 8 7
b = order_cols(A4; 2)'=[3 1 2]
[3 5 2]
B = extract_cols(4; b)'=|1 4 9
|7 6 8l
¢ = revorder_cols(A4; 2)'=[2 1 3]
[2 5 3]
C = extract_cols(4; ¢)'=19 4 1
8 6 71

Page 56 / 97

order_rows (M ; j)

revorder_rows (M ; j)

Parameters:

Return value:

Notes:

Example:

mcount (M ; x)

Parameters:

Return value:

Example:

msearch(M; x;

Parameters:

Return value:

Notes:

Example:

M - the matrix to be ordered;

J - the index of the column on which the ordering will be based.

a vector containing the indexes of the rows of matrix M ordered by the
values in column ;.

order_rows returns the indexes in ascending order, and revorder_rows - in
descending order. The matrix is not modified. Each index in the output
vector 7 shows which row in M should be placed at the current position to
obtain a sorted sequence in column ;. You can get the sorted matrix by
calling extract_rows (M ; 7).

5 2 3
A = [5; 2; 3|4; 9; 1]|6; 8; 7]'=14 9 1
6 8 7
b = order_rows(A4; 2)'=[1 3 2]
[5 2 3]
B = extract_rows(4; b)'=|6 8 7
4 9 11
¢ = revorder_rows(A; 2)' =[2 3 1]
[4 9 1]
B = extract_rows(4; c¢)' =16 8 7
5 2 3l
M - matrix;

X - the value to count the occurrences of.

the number of occurrences of value x in matrix M.
101

A =[1; @; 1|2; 1; 2|1; 3; 1]'= [2 1 2]
1 31

n = mcount(A4; 1)' =5

I3 J)

M - matrix;

X - the value to search for;

I - starting row index;

J - starting column index.

a vector containing the row and column indexes of the first occurrence of x

in matrix M after indexes i and j, inclusive.

The searching is performed row by row, consecutively from left to right. If

nothing is found, [0 0] is returned as result.

1 2 3
A = [1; 2; 3|1; 5; 6]|1; 8; 9]':!1 5 6]
189
= msearch(4; 1; 1; 1)' =[1 1]
c = msearch(4; 1; 2; 2)'=[3 1]
d = msearch(A4; 4; 1; 1)'=[0 0]

Page 57 / 97

mfind(M; x)

Parameters:

Return value:

Notes:

Example:

hlookup(M; x;

Parameters:

Return value:

Notes:

Example:

M - matrix;

x - the value to search for.

a two-row matrix containing the indexes of all elements in matrix M that are
equal to x.

The top row in the result contains the row indexes, and the bottom row -
the respective column indexes of the elements in M equal to x. If nothing is
found, a 2x1 matrix with zeros is returned.

1 2 3
A = [1; 2; 3|4; 1; 6|1; 8; 9]'=[4 1 6]
1 89
B = mfind(4; 1)'=[1 ; i]
C = mfind(4; 5) = [g]
i1; 13)

M - the matrix in which to perform the lookup;
X - the value to look for;
i1 - the index of the row where to search for value x;

I, - the index of the row from which to return the corresponding values.
a vector containing the values from row i, of matrix M for which the
respective elements in row i, are equal to x.

The values are collected consequently from left to right. If nothing is found,
an empty vector [] is returned.
A =1[0; 1; 0; 1|1; 2; 3; 4; 5|6; 7; 8; 9; 10]' =

b = hlookup(A4; 0; 1; 3)'=[6 8 10]
¢ = hlookup(A4; 2; 1; 3)' =]

vlookup(M; x; ji;5 Jo)

Parameters:

Return value:

Notes:

Example:

M - the matrix in which to perform the lookup;
X - the value to look for;
J1 - the index of the column where to search for value x;

J» - the index of the column from which to return the values.
a vector containing the values from column j, of matrix M for which the
respective elements in column j; are equal to x.

The values are collected consequently from top to bottom. If nothing is
found, an empty vector [] is returned.

A = [1; 2|3; 4; 1|5; 6|7; 8; 1]|9; 10]' =

O J U1 W
[EEN

OCOO\»-PN
O = OO

Page 58 / 97

c
d

vlookup(A4; ©; 3; 1)'=[15 9]
vlookup(A4; 1; 3; 2)'=[4 §]
vlookup(A4; 2; 3; 1)'=1]

The find, hlookup and vlookup functions have variations with suffixes. Different suffixes refer to

different comparison operators. They replace the equality in the original functions while the rest of

the behavior remains unchanged. The possible suffixes are given in the table below:

suffix mfind hlookup vlookup comparison operator
_eq |mfind_eq(M; x) |hlookup_eq(M; x; iy; i) |vlookup_eq(M; x;iy;iy) |= - equal

_ne |mfind_ne(M; x) |hlookup_ne(M; x; iy; i) |vleokup_ne(M; x;iy;5i;) |# - notequal

_1t |mfind_l1t(M; x) |hlookup_1t(M; x; iy;i,) |vlookup_lt(M; x;iy;i,) |< - less than

_le |mfind_le(M; x) |hlookup_le(M; x; iy; i) |vlookup_le(M; x;iy;i,) < -lessthan or equal
_gt |mfind_gt(M; x) |hlookup_gt(M; x;iy;i,) |vleokup_gt(M; x;iy;5i,) |> - greater than

_ge |mfind_ge(M; x) |hlookup_ge(M; x; iy; i,) |vlookup_ge(M; x;iy; i) |2 - greater than or equal

Math functions

All standard scalar math functions accept matrix arguments as well. The function is applied separately
to all the elements in the input matrix, even if it is of a special type. The results are returned in a
corresponding output matrix. It is always a general (rectangular) type, so the structure is not
preserved. For example:

#rad
1.571 0 0
M = diagonal(3; mw/2)' :[0 1571 0

0 0 1571

011
cos(M)' =|1 0 1
110

Calcpad also includes a lot of math functions that are specific for matrices, as follows:

hprod(A4; B)
Parameters: A - first matrix;
B - second matrix.

Return value: (matrix) the Hadamard product of matrices 4 and B.

Notes: Both matrices must be of the same size. The Hadamard (a.k.a. Schur)
product C = AQ®B is an element-wise product of two matrices. The
elements of the resulting matrix are obtained by the following equation:
Cij = Aij Bij- If both matrices are of equal type, the type is preserved in the
output, otherwise, the returned matrix if of general type.

1 2

Example: A = [1; 2|3; 4]|5; 6]':!3 4]

56
9 8
B =1[9; 8|7; 6|5; 4]'=|7 6
5 4

Page 59 /97

fprod(A4; B)

Parameters:

Return value:
Notes:

Example:

kprod(A4; B)

Parameters:

Return value:
Notes:

Example:

mnorm_1 (M)
Parameters:
Return value:

Notes:

Example:

9 16
C = hprod(4; B)'= [21 24]
25 24

A - first matrix;

B - second matrix.

(scalar) the Frobenius product of matrices 4 and B.

Both matrices must be of the same size. The result is obtained by summing
the products of the corresponding element pairs of the input matrices:

m n
p= A;jBij
i=1j=1
1 2
A = [1; 2|3; 4]|5; 6]':[3 4]
56
9 8
B = [9; 8|7; 6]|5; 4]':[7 6]
5 4
C = fprod(A4; B)' =119

A - first matrix;

B - second matrix.

(matrix) the Kronecker product of matrices 4 and B.

If A is mxn and B is pxq matrix, the result is a mpxnq block matrix C,
where each block is obtained by the equation: [C']; = 4 B.

1 2

A = [1; 2]|3; 4]'=[3 4
B = [5; 6; 7|8; 9; 10]':[2 8 170
5 6 7 10 12 14
] |8 9 10 16 18 20
C = kprod(A4; B)' = 15 18 21 20 24 28
24 27 30 32 36 40
M - matrix.

scalar representing the L; (Manhattan, a.k.a. taxicab) norm of matrix M.

It is obtained as the maximum of all L, column vector norms by the equation:

m
1M1l = max > |M|
i=1

12 3
A = [1; 2; 3|4; 5; 6|7; 8; 9]':!4 5 6]

mnorm_1(A4)' = 18

mnorm(A/) or mnorm_2 (M)

Parameters:

M - an mxn matrix where m > n.

Page 60 / 97

Return value:

Notes:

Example:

mnorm_e (M)
Parameters:

Return value:
Notes:

Example:

mnorm_i (M)
Parameters:
Return value:

Notes:

Example:

cond_1(M)
Parameters:
Return value:

Notes:

Example:

scalar representing the L, (spectral) norm of matrix M.

It is obtained as the maximum singular value of matrix M:
1Ml2 = Omax(M).

1 2 3
A = [1; 2; 3|4; 5; 6|7; 8; 9]':[4 5 6]

7 89
mnorm_2(A)' = 16.8481

M - matrix.

scalar representing the Frobenius (Euclidean) norm of matrix M.

It is similar to vector Euclidian norm, assuming that the matrix is linearized
by row concatenation. It calculated as the square root of sum of the squares
of all elements, as follows:

A = [1; 2; 3|4; 5; 6|7; 8; 9]':[4 56

mnorm_e(A4)' = 16.8819

M - matrix.
scalar representing the L, (infinity) norm of matrix M.

It is evaluated as the maximum of all L, row vector norms by the equation:

n
1Ml = maz > |My|
=1

1<ism

12 3
A = [1; 2; 3|4; 5; 6|7; 8; 9]':[4 5 6]

mnorm_i(A4)' = 24

M - square matrix.
(scalar) the condition number of M based on the L norm.

It is calculated by the equation: k{(M) = || M ||1- [|M |4
12 3
A = [1; 2; 3|4; 5; 6|7; 8; 9]'=[4 5 6]
7 89
cond_1(A)' = 6.4852x10"7

cond(M) or cond_2(M)

Parameters:
Return value:

Notes:

M - an mxn matrix where m > n.
(scalar) the condition number of M based on the L, norm.

The condition number shows how sensitive is the matrix 4 for solving the

Page 61 /97

Example:

cond_e (M)
Parameters:

Return value:
Notes:

Example:

cond_i(M)
Parameters:
Return value:

Notes:

Example:

det (M)
Parameters:

Return value:
Notes:

N -
equation 4 x = b or inverting the matrix. The higher is the number, the

lower is the accuracy of the obtained solution. In theory, singular matrices
have infinite condition numbers. However, in floating point environment,

one can obtain very large, but finite number, due to floating point errors.

The condition number is calculated by the following expression:

Ko (M) = O-max(M)/O-min(M)

Since this is computationally expensive, the other functions can be used

instead, providing similar values but at lower computational cost.
12 3

A = [1; 2; 3|4; 5; 6|7; 8; 9]'=[4 5 6]
7 89

cond_2(A4)' = 1.7159x 10"/

M - square matrix.

(scalar) the condition number of M based on the Frobenius norm.
It is calculated by the expression:

KeM) = [|M || IIM e

1 2 3
A = [1; 2; 3|4; 5; 6|7; 8; 9]':[4 5 6]

cond_e(A4)' = 4.5618x10"7

M - square matrix.
(scalar) the condition number of M based on the L., norm.

It is obtained by the equation:
KoM) = [|M [l oo 1M |0

12 3
A = [1; 2; 3|4; 5; 6|7; 8; 9]':[4 5 6]

cond_i(A4)' = 8.6469x10"7

M - square matrix.

(scalar) the determinant of matrix M.

To evaluate the result, the matrix is first decomposed to lower triangular (L)
and upper triangular (U) matrices by LU factorization. Then, the determinant
is obtained as the product of the elements along the main diagonal of the
U matrix. Theoretically, for singular matrices, the determinant should be
exactly zero. However, it is not recommended to use this criterion in
practice. Due to floating point round-off errors, it can return a "small" but
non-zero value. It is better to use rank or condition number instead.

Page 62 / 97

Example:

rank (M)

Parameters:
Return value:
Notes:

Example:

trace(M)

Parameters:
Return value:
Notes:

Example:

transp(M)

Parameters:
Return value:
Notes:

Example:

adj (M)
Parameters:

Return value:
Notes:

A = [1; 2; 3|4; 5; 6|7; 8; 9]'=[4 56

det(A4)' = 6.6613x10°16

M - an mxn matrix where m > n.

(scalar) the rank of matrix M.

Rank represents the number of linearly independent rows in a matrix. It is
evaluated by performing an SVD decomposition of the matrix and counting
the non-zero singular values.

123
A = [1; 2; 3|4; 5; 6|7; 8; 9]':[4 5 6]
7 89

rank(A4)' =2

M - square matrix.

(scalar) the trace of matrix M.

Trace is defined as the sum of the elements along the main diagonal of a
square matrix.

1 2 3
A = [1; 2; 3|4; 5; 6|7; 8; 9]':[4 5 6]

7 89
trace(4)' =15

M - matrix.

(matrix) the transpose of M.

The transpose is obtained by swapping the rows and the columns of the
matrix. If M is symmetric, the transpose is equal to the matrix itself, so just a
copy of M is returned.

1 2 3

A = [1; 2; 3|4; 5; 6|7; 8; 9]'=[4 5 6]

7 8 9
1 4 7
tr‘ansp(A)'z[Z 5 8]
369

M - square matrix.
the adjugate of matrix M.
The adjugate of a square matrix is the transpose of the cofactor matrix. It is
obtained by multiplying the inverse of M by the determinant of M:
adj(M) = M '-|M|. However, this is not applicable when the matrix is
singular. In this case, if the size of the matrix is n < 10, Laplace expansion is
used: A, = C, = M,-(-1)*. For n > 10, it is reported that the matrix is
singular instead, because Laplace expansion has a complexity of O(n!) and
would take unreasonably long.

Page 63 /97

Example: A4 = [1; 2|3; 4]':[1 2]

3 4
adj(A)lz[?f.-?J
det(4)' =2
inverse(4)' = [1_5 _(1).5]

cofactor(A4)
Parameters: A - square matrix.
Return value: the cofactor matrix of 4.
Notes: The cofactor Cij is defined as the respective minor Mij is multiplied by
(—1)i +J_The minor Mij represents the determinant of the submatrix,

obtained by removing the i-th row and the j-th column. In Calcpad, the
cofactor matrix is calculated by transposing the adjugate: C = adj(4)"

Example: cofactor([1; 2[3; 4])' = [_; _ﬂ

eigenvals(M; 1¢)
Parameters: M - symmetric matrix;
e — the number of eigenvalues to extract (optional).
Return value: a vector containing the 7. lowest (or largest) eigenvalues of matrix M.
Notes: If 7e > O the first 77 lowest eigenvalues are returned in ascending order.
If 76 < O the first 770 largest eigenvalues are returned in descending order.

If 76 = 0 or omitted, all eigenvalues are returned in ascending order.

If M is a high-performance symmetric matrix and the number of rows

is > 200 calculations are performed by using iterative symmetric Lanczos

solver. Otherwise, direct symmetric QL algorithm with implicit shifts is used.
Example: A = copy(_

[4; 12; -16]| _
12; 37; —43| _|
-16; -43; 98]; _
4 12 -16
symmetric(3); 1; 1)':[12 37 —43]
—-16 —43 98

eigenvals(A4)' =[0.0188 15.5 123.48]

eigenvecs(M; 1¢)
Parameters: M - symmetric matrix;
e — the number of eigenvectors to extract (optional).

Return value: a nexn matrix which rows represent the eigenvectors of M.

Notes: The same rules as for eigenvals(M ; 71¢) apply.
Example: A = copy(_

[4; 12; -16| _

12; 37; -43| _

-16; -43; 98]; _

Page 64 / 97

eigen(M; i)

Parameters:

Return value:

Notes:

Example:

cholesky (M)

Parameters:
Return value:
Notes:

Example:

4 12 -16
symmetric(3); 1; 1)'= [12 37 —43]
—16 —43 98
09634 —-0.2648 0.0411
eigenvecs(A4)' = [—0.2127 —0.849 —0.4838]
—0.163 —0.4573 0.8742

M - symmetric matrix;
e — the number of eigenvalues/vectors to extract (optional).
a nex(n + 1) matrix were each row contains one eigenvalue, followed by

the elements of the respective eigenvector of matrix M.
In case both are needed, this function is more efficient than calling

eigenvals(M ; 71¢) and eigenvecs(M ; 71¢) separately. The same rules as for

eigenvals(M ; 1) apply.

A = copy(_
[4; 12; -16]| _
12; 37; -43| _
-16; -43; 98]; _
4 12 -—-16
symmetric(3); 1; 1)'=[12 37 —43]
—16 —43 98

0.0188 0.9634 -—-0.2648 0.0411
eigen(4)' =| 15.504 -0.2127 -0.849 —0.4838
123.477 —-0.163 —-0.4573 0.8742

M - symmetric, positive-definite matrix.

(upper triangular matrix) the Cholesky decomposition of M.

This kind of decomposition turns the matrix into a product of two triangular
matrices: M = L-L 7. The current function returns only the upper part - L T.
Cholesky decomposition is faster and more stable than the respective LU
decomposition of the same matrix.

A4 = copy(_
[4; 12; -16| _
12; 37; -43| _
-16; -43; 98]; _
4 12 -16
symmetric(3); 1; 1)':[12 37 —43]
—16 —43 98
2 6 —8
LT = cholesky(A)' = [0 1 5] - the upper triangular matrix LT
00 3
2 00
L = transp(LT)' = ! 6 1 0] - the lower triangular matrix L
-8 5 3
4 12 -16
e = [12 37 —43] - check
—-16 —43 98

Page 65 /97

lu(M)
Parameters:

Return value:
Notes:

Example:

M - square matrix.

(matrix) the LU decomposition of M.

The LU decomposition factors the matrix as a product of two matrices:
lower triangular L and upper triangular U (M = L-U). It does not require
the matrix to be symmetric. Since LU decomposition is not unique, there is
an infinite number of solutions. Here it is assumed that all elements along
the main diagonal of L are equal to one. The function returns both matrices
L and U, packed in a single square matrix. The elements along the main
diagonal belong to U, since it is known that those of L are ones. The
solution is performed by using the Crout's algorithm with partial pivoting.
Instead of building the permutation matrix P, Calcpad internally creates a

vector ind containing the indexes of the rows after reordering.

If you need both matrices L and U separately, you can extract them as a
Hadamard product of the combined matrix by the respective lower/upper
triangular matrix. After that, you have to reset the diagonal of L to ones.
If the type of M is symmetric matrix, the LDLT decomposition is returned
instead of LU. It is similar to Cholesky decomposition but avoids taking
square roots of diagonal elements. For that reason, the matrix is not
required to be positive-definite. However, it makes it necessary to store the
diagonal elements in a separate diagonal matrix D. Therefore, matrix M is
represented as a product of three matrices:

M = L-D-L". They are also packed in a single square matrix.

4 12 -16
A = [4; 12; -16|12; 37; -43|-16; -43; 98]'=| 12 37 —43
—16 —43 98

12 37 —43
LU = 1lu(A4)' =|-1333 6.333 40.667| - the combined matrix
0.3333 —0.05263 0.4737

ind'=[2 3 1]
011

D = not(identity(3))' = [1 0 1‘—the index permutation vector
110

L = hprod(mfill(1ltriang(3); 1); LU)"D' =

[1 0 0

—1.333 1 0] - extracts the lower triangular matrix

10.3333 —0.05263 1

U = hprod(mfill(utriang(3); 1); LU)' =
[12 37 —43

0 6.333 40.667] - extracts the upper triangular matrix
L 0 0 0.4737

4 12 -16
extract_rows(L*U; order(ind))' = [12 37 —43]— check
—-16 —43 98

Page 66 / 97

qr (M)
Parameters:
Return value:
Notes:

Example:

svd (M)
Parameters:
Return value:
Notes:

Example:

M - square matrix.

(matrix) the QR decomposition of matrix M.

As the name implies, the matrix is factored as a product (M = O-R) of an
orthonormal matrix O and upper triangular matrix R. The Householder's
method is used for that purpose. The algorithm is stable and does not need
pivoting. Both matrices are packed in a single nx2n block rectangular
matrix [Q,R] and returned as a result. You can each of the two matrices
using the submatrix function.

4 12 —-16
A = [4; 12; -16|12; 37; -43|-16; -43; 98]':[12 37 —43]
—16 —43 98
OR = qr(4)' =
—0.1961 —-0.1695 0.9658 —20.396 —57.854 105.314
—0.5884 —0.7676 —0.2542 0 —3.858 —24.853]-the
0.7845 —-0.6181 0.05083 0 0 0.4575

combined QR matrix
O = submatrix(QR; 1; 3; 1; 3)'=
[—0.1961 —0.1695 0.9658]
—0.5884 —0.7676 —0.2542| - extracts the Q matrix
| 0.7845 —0.6181 0.050831
R = submatrix(QOR; 1; 3; 4; 6)'=
[—20.396 —57.854 105.314]

0 —3.858 —24.853] - extracts the R matrix
0 0 0.4575 |
4 12 -—-16
O*R' = [12 37 —43]— check
—16 —43 98

M - an mxn matrix, where m > n.

the singular value decomposition (SVD) of matrix M.

The matrix is factored as a product of three matrices: M = U2V T, where X
is a diagonal matrix containing the singular values of M, and U and V' T are
orthonormal matrices which columns represent the left and right singular
vectors, respectively. The result is returned as a single mx(2n + 1) matrix

[U, Z, V], where X is a single column containing all singular values. They are
sorted in descending order and the singular vectors are reordered
respectively to match the corresponding singular values. Note that the
returned V' T matrix is already transposed, so you do not have to do it again.
Occasionally, some singular vectors may flip signs so that U-2*V T will not
give M after multiplying the obtained matrices. Sign ambiguity is a well-
known and common problem of most SVD algorithms. For symmetric
matrices the singular values are equal to the absolute eigenvalues: g; = | 4; .

4 12 -16
A = [4; 12; -16|12; 37; -43|-16; -43; 98] = [12 37 —43]
—16 —43 98
SVD = svd(A)' =

Page 67 / 97

inverse (M)

Parameters:
Return value:
Notes:

Example:

é
lsolve(A; b)

Parameters:

Return value:
Notes:

Example:

—0.163 0.2127 —-0.9634 123.477 -—-0.163 —-0.4573 0.8742
—0.4573 0.849 0.2648 15.504 0.2127 0.849 0.4838 | - the
0.8742 0.4838 —0.0411 0.0188 —-0.9634 0.2648 —-0.0411
combined matrix
U = submatrix(SVD; 1; 3; 1; 3)'=
[—0.163 0.2127 —0.9634
—0.4573 0.849 0.2648] - extracts the U matrix
| 0.8742 0.4838 —0.0411
V = submatrix(SVD; 1; 3; 5; 7)' =
[—0.163 —0.4573 0.8742
0.2127 0.849 0.4838] - extracts the V matrix
|—0.9634 0.26483 —0.0411
o = col(SVD; 4)' =[123.477 15504 0.0188] - extract singular values

2 = vec2diag(o)' =

123.477 0 0
0 15.504 0 - composes the singular value matrix
0 0 0.0188

M - square matrix.

the inverse of matrix M.

The inverse is obtained by LU decomposition for non-symmetric matrices
and LDLT decomposition for symmetric ones. If the matrix is singular, the
inverse does not exist. If it is ill conditioned, the result will be distorted by
large errors. This is detected during the LU decomposition by watching for
a zero or tiny pivot element. If one is detected, an appropriate error
message is returned, instead of erroneous solution.

4 12 -—-16
A = [4; 12; —16|12; 37; —43|—16; -43; 98]'=[12 37 —43]
—-16 —43 98
49361 -—-13.556 2.111
B = inversec4)'=[—13556 3.778 -—0556‘
2.111 —0.556 0.111
1 00
A*B'=[O 1 O]—check
0 01

A - a square matrix with the equation coefficients;

Z - the right-hand side vector.

the solution vector X of the system of linear equations Ax = Z
Calculations are performed by using LU decomposition for non-symmetric
matrices and LDLT for symmetric. That is why the matrix is not required to
be positive-definite. If A is singular or ill-conditioned, an error message is
returned.

8 6 —4
A = [8; 6; -4|6; 12; -3|-4; -3; 9]':[6 12 —3]
-4 -3 9

b = [10; 20; 30]' =[10 20 30]
x = 1lsolve(A4; b)' =[2.5 1.667 5] - the solution vector

Page 68 / 97

é
clsolve(A4; b)

Parameters:

Return value:

Notes:

Example:

%
slsolve(A4; b)

Parameters:

Return value:

Notes:

Example:

msolve(A4; B)

Parameters:

Return value:

Notes:

A*x' =[10 20 30] - check

A - symmetric, positive-definite coefficient matrix;
b - the right-hand side vector.

- -
the solution vector x of the system of linear equations Ax=b using

Cholesky decomposition.
Cholesky decomposition is faster than LU and LDLY, so this function should
be preferred over Isolve whenever the matrix is symmetric and positive-
definite.

A = copy([8; 6; -4|6; 12; -3|-4; -3; 9];

8 6 —4 -
symmetric(3); 1; 1)'=[6 12 —3]
-4 -3 9
b = [10; 20; 30]' =[10 20 30]
x = clsolve(A4; b)' =[2.5 1.667 5] - the solution vector
A*x' = [10 20 30] - check

A - high-performance symmetric, positive-definite coefficient matrix;
b - high-performance the right-hand side vector.

- - 2
the solution vector x of the system of linear equations Ax = b using

preconditioned conjugate gradient (PCG) method.
The PCG method is iterative and is faster than the direct Cholesky
decomposition method. Whenever you have larger systems with tens to
hundreds of thousands equations it is recommended to use

the slsolve function with high performance matrices and vectors.

A = copy([8; 6; -4]6; 12; -3|-4; -3; 9];

8 6 —4
symmetric_hp(3); 1; 1)' = [6 12 —3]
-4 -3 9
b = hp([10; 20; 30])' =[10 20 30]
x = slsolve(A; b)' =[2.5 1.667 5] - the solution vector

A*x' = [10 20 30] - check

A - a square matrix with the equation coefficients;

B - the right-hand side matrix.

the solution matrix X of the generalized matrix equation AX = B.

Similar to Isolve, except that matrix B columns contain multiple right-hand
side vectors and matrix X columns represent the respective solution vectors.
In this way, the function can solve multiple systems of linear equations in
parallel. The LU/LDLT decomposition of A is performed only once in the
beginning and the result is reused for backsubstitution multiple times.

Page 69 / 97

Example:

cmsolve(A4; B)

Parameters:

Return value:

Notes:

Example:

smsolve(A4; B)

Parameters:

Return value:

Notes:

Example:

8 6 —4
A = [8; 6; -4|6; 12; -3|-4; -3; 9]'=[6 12 —3]
-4 -3 9
10 40
B = join.us([10; 20; 30]; [40; 50; 6@])'=[20 50]
30 60
25 871
X = msolve(A4; B)'= [1.67 2.67]— the solution vector
5 1143
10 40
A*X' = [20 50]— check
30 60

A - symmetric, positive-definite coefficient matrix;
B - the right-hand side matrix.

the solution matrix X of the generalized matrix equation AX = B using
Cholesky decomposition.

Similar to clsolve, having that B matrix columns contain multiple right-hand
side vectors and X matrix columns represent the respective solution vectors.
In this way, the function can solve multiple systems of linear equations in
parallel. The Cholesky decomposition of 4 is performed only once in the
beginning and the result is reused for backsubstitution multiple times.

A = copy([8; 6; -4|6; 12; -3|-4; -3; 9];

8 6 —4
symmetric(3); 1; 1)'=[6 12 —3]
-4 -3 9
10 40
B = join.1s([10; 20; 30]; [40; 50; 60])'=[20 50]
30 60
25 8.71
X = cmsolve(A4; B)'= [1.67 2.67‘ - the solution vector
5 1143
10 40
A*X ' = [20 50] - check
30 60

A - high-performance symmetric, positive-definite coefficient matrix;

B - high-performance right-hand side matrix.

the solution matrix X of the generalized matrix equation AX = B using
preconditioned conjugate gradient (PCG) method.

Similar to slsolve, having that B matrix columns contain multiple right-hand
side vectors and X matrix columns represent the respective solution vectors.

A = copy([8; 6; -4|6; 12; -3|-4; -3; 9];

8 6 —4

symmetric_hp(3); 1; 1)':[6 12 —3]

-4 -3 9
10 40
B = hp(join.i1s([10; 20; 30]; [40; 50; 66]))':[20 50]
30 60

Page 70 / 97

25 8.71
X = smsolve(A; B)' =|1.67 2.67 |- the solution vector

5 1143
10 40

A*X' = [20 50] - check
30 60
fft(M)

Parameters: M - an hp matrix containing the input signal in time domain. It must have
one row for real only values or two rows for complex values. The first row
must contain the real part and the second row - the corresponding
imaginary part.

Return value: the fast Fourier transform of the input signal stored in M. Similar to the
input, the real part of the output is stored in the first row and the imaginary
part - in the second row.

Notes: The fast Fourier transform is performed by using the classic Cooley-Turkey
algorithm.
. - [1: 2- 3 _[1 2 3 4
Example: A = [1; 2; 3; 4]|e] _[0 00 0
_ v _[10 =2 -2 -2
B = fft(4)' = [0 o 7

ift(M)

Parameters: M - an hp matrix containing the input signal in frequency domain. It must
have one row for real only values or two rows for complex values. The first
row must contain the real part and the second row - the corresponding
imaginary part.

Return value: the inverse Fourier transform of the input signal stored in M from
frequency domain to time domain. Similar to the input, the real part of the
output is stored in the first row and the imaginary part - in the second row.

Notes: The inverse Fourier transform is performed by using the classic Cooley-
Turkey algorithm.

[1; 2; 3; 4|e]

12 3 4
00O0O0

Aggregate and interpolation functions

(10 =2 =2 -2
=1

Example: A 3 0 2

B

ift@4y:[

All aggregate functions can work with matrices. Since they are multivariate, each of them can
accept a single matrix, but also a list of scalars, vectors and matrices, mixed in arbitrary order. For
example:

4 = [e; 2| 4; 8]

b = [5; 3; 1]

sum(10; A; b; 11)' =44
Interpolation functions behave similarly, when invoked with a mixed list of arguments. In this case
matrices are linearized by rows into the common array of scalars at the respective places. Then the
interpolation is executed over the entire array. However, there is also a "matrix" version of these
functions, that can perform double interpolation over a single matrix. In this case you must specify

Page 71 /97

exactly three arguments: the first two must be scalars (the interpolation variables) and the third one
must be a matrix, as follows:

take(x; y; M)
Parameters: x - row index;

y - column index;

M - matrix.
Return value: (scalar) the element of matrix M at indexes x and .
Notes: If x and y are not integer, they are rounded to the nearest integer.

1 2 5
Example: A = [1; 2; 5|3; 6; 15|5; 10; 25]'=[3 6 15]
5 10 25
take(2; 3; A)' =15
line(x; y; M)
Parameters: x - interpolation variable across rows;
) - interpolation variable across columns;
M - matrix.

Return value: (scalar) the value obtained by double linear interpolation from the elements
of matrix M based on the values x and y.

Example: A = [1; 2; 5|3; 6; 15|5; 10; 25]'=F é 155]
5 10 25
line(1.5; 2.5; A)'=7
spline(x; y; M)

Parameters: x - interpolation variable across rows;
y - interpolation variable across columns;
M - matrix.

Return value: (scalar) the value obtained by double Hermite spline interpolation from the
elements of matrix M based on the values x and y.

1 2 5
Example: A = [1; 2; 5|3; 6; 15|5; 10; 25]'=[3 6 15]
5 10 25

spline(1.5; 2.5; A)' = 6.625
You can use interpolation functions to plot matrix data, as in the example below:
$Map{spline(x; y; A) @ x =1 : n_rows(A) & y =1 : n_cols(4)}

A full list of the available aggregate and interpolation functions is provided earlier in this manual
(see "Expressions/Functions” above).

Page 72 / 97

Operators

All operators can be used with matrix operands. Both matrices must be of the same sizes.
Operations are performed element-by-element, and the results are returned in an output matrix.

For example:
.0 1 2
4 = [e; 1; 2|3; 4; 5] =[3 4 5]
.11 10 9
B = [11; 10; 9|8; 7; 6] :[8 . 6]

C o1 11 11
A+B‘[11 11 11

The only exception is multiplication operator "*" which represents the standard matrix
multiplication. The elementwise (Hadamard or Schur) product is implemented in Calcpad as a
function: hprod. Matrix multiplication Cpy,p = Apxn Bnxp is defined so that each element ¢;; is
obtained as the dot product of the i-th row of 4 and the j-th column of B:

n

Cij = Z Qi by j

k=1
For example:
_ 1 2 3
A - [13 2) 3|4) 5: 6] _[4 5 6]
6 5
B = [6; 5|4; 3]|2; 1]'=[4 3]
2 1

o an 2

All binary operators are supported for mixed matrix-vector and vector-matrix operands. In this
case, the vector is treated as column matrix. For example:

L5 ol

4 =11; 2; 3145 55 6]'=|

b = [6; 5; 4]

A*b' = [28 73]
Matrix-scalar and scalar-matrix operators are also implemented in an element-wise manner. The
operation with the provided scalar is performed for each element and the result is returned as matrix.
For example:

[1; 2]3; 4]*5-:[5 10]

15 20
High performance vectors and matrices

High performance (hp) vectors and matrices were introduced in Calcpad version 7.3.0 with the
purpose of solving larger engineering problems faster and with less memory consumption. But this
comes with a trade-off: all elements of an hp vector or matrix must have the same units. This allows
Calcpad to store and process the units only once for the whole vector/matrix and perform a lot of
additional optimizations like SIMD vectorization of operations, application of more cache-friendly
algorithms, etc. All this results in dozens of times improvement in speed and reduces the required
memory size more than twice, even if there are no units at all.

Hp vectors and matrices are initially created by special functions, similar to standard creational
functions, but ending with “_hp”, as follows:

Page 73 /97

Functions for creating hp vectors:
vector_hp(n) - creates an empty hp vector with length »;
range_hp(xq; X,; §) - creates an hp vector from a range of values.
Functions for creating hp matrices:
matrix_hp(m; n) - creates an hp empty matrix with dimensions mxn;
identity_hp(n) - creates an hp identity matrix with dimensions nxn;
diagonal_hp(n; d) - creates an nxn hp diagonal matrix filled with value d

column_hp(m; c) - createsan mx1 hp column matrix filled with value ¢;

utriang_hp(n) - creates an nxn hp upper triangular matrix;
ltriang_hp(n) - creates an nxn hp lower triangular matrix;
symmetric_hp(n) - creates an nxn hp symmetric matrix.

The function hp(x) converts any argument x to its high-performance equivalent. It can be used
together with the square brackets operator [] for initialization of vectors and matrices from a list
of values. For example:

a = hp([1; 2; 4]) will create a high-performance vector and...
A = hp([1; 2; 3|4; 5; 6]) will create a high-performance matrix.
The conversion includes coping the values from the standard array to the hp one, so it must be used
only for small arrays. If the standard array contains different, but consistent units, they will be
converted to the units of the first element. If the units are not consistent, the conversion is not
possible and error is returned instead. For example:
a = hp([1m; 2@dm; 30cm]) = [1m 2m 0.3m]
a = hp([1m; 20s; 30kg])' = Inconsistent units: "m, kg".

Any expression that contains only hp vectors/arrays will return also an hp type. If the expression
contains only standard vectors/arrays or mixed standard and hp, it will return a standard type. To
check if the type of x is a high-performance (hp) vector or matrix you can use the function ishp(x).

High performance symmetric solvers

Calcpad also includes advanced solvers for two of the most common matrix problems — solution of
linear systems of equations and finding the eigenvalues and eigenvector of a matrix:

PCG symmetric linear solver

Direct methods using Cholesky and LDL' factorizations are suitable for small to medium sized
matrices. For larger matrices, the computational cost and solution time get too high for practical use
because the asymptotic complexity of factorization is O(n?). In such cases, iterative solution methods
are preferred. They are much faster than direct ones, especially if the matrix is well conditioned. One
of the most popular of them is the preconditioned conjugate gradient (PCG) method. Its complexity
is 0(mvk), where m is the number of nonzero elements and k is the condition number of the matrix.

In Calcpad, the PCG method is used in the following functions:

slsolve(A; b) - solves the symmetric linear system of equations Ax = b;

smsolve(A; B) - solves the generalized symmetric matrix equation AX = B.

Page 74 / 97

Since most engineering methods like FEM and finite differences use symmetric matrices, we put a
lot of effort into improving this particular kind of problem. If the matrix has banded or skyline
structure, the algorithm takes advantage of that by storing and processing only the elements within
the bandwidth. You can achieve such structure and minimize the bandwidth by providing appropriate
numbering for the joints of the FE model.
Iterative methods like PCG are approximate and the solution continues until a certain precision is
achieved. In Calcpad, it is specified by setting the variable Tol. Its default value is Tol = 107 just like
in MATLAB. If the required precision is not reached for under 1000 iterations, no convergence is
assumed, so the solution is stopped with an error message. Preconditioning can often improve
convergence by reducing the condition number k. In Calcpad, a simple Jacoby preconditioner is used
for that purpose.
Symmetric Lanczos eigensolver
Similarly to the system of equations, the direct QL algorithm with implicit shifts we use for finding
the eigenvalues and eigenvectors of matrices has a complexity of O(n®) which makes it suitable for
small to medium sized problems. In addition, it always finds all eigenvalues and eigenvectors, which
is not required in most cases. For example, in structural dynamics we usually need only the first of
the most significant vibration frequencies and modes. The Lanczos method is much more appropriate
for that purpose. It can find several of the extreme (smallest or largest) eigenvalues of a large matrix
but much faster than the Implicit QL algorithm. It has a time complexity of O(k?m), where k is the
number of iterations and m is the number of nonzero elements of the matrix. It is applied at the
tridiagonalization step, replacing the Householder's reflections method.
In Calcpad, it is used for the same functions as the QL method, when the size of the matrix is > 200:
eigenvals (M ; ¢)- the first 77¢ eigenvalues of matrix M;
eigenvecs (M ; 1¢)- the first 77¢ eigenvectors of matrix M;

eigen(M; ne) - the first 77¢ eigenvalues and eigenvectors of matrix M.

Argument e is optional and can be omitted. In this case or if 77e = O, all eigenvalues/vectors are
returned. If 77e < 0 the lowest eigenvalues are returned and if 77e > 0 - the largest ones.

The maximum number of iterations is set to be 477e + 100. So, if the size of the matrix is n < 1000
and 7e > n/5 the QL method is used again. This is because the Lanczos method is less accurate and
when the number of iterations gets close to the matrix size, the performance is reduced to the one
of the QL algorithm.

Reporting

All calculations are automatically collected into a professionally formatted calculation report. You can
print it or open it with MS Word for editing. Besides math expressions, you can add headings,
comments, tables and images.

Headings

A heading is a text, enclosed in double quotes (). It is bold and larger than the main text.

Page 75/ 97

Text/comments

Comments are enclosed in single quotes (*). You can skip the closing quote, if it is the last symbol in
the line. Headings and comments can contain any symbols without restrictions. Everything outside
them is assumed to be math expressions. However, if you put any formulas inside comments, they
will not be calculated or formatted. Since the final output is rendered to an Html document, you can
use Html and CSS in comments to provide your calculation report with additional formatting.

Units in comments

Alternatively, to native units, you can enter all values to be unitless and then put the units in the
comments. In this case, you will have to include all unit conversion factors in the equations. Also,
there is an option to generate a selection box for length units - m, em and mm. You only need to
insert %u in comments wherever you want the units to appear. When the program generates the
input form (see further) it checks whether %u exists somewhere in the code. If so, it automatically
adds a unit selection combo box, at the top-right corner. When you change the units from the combo,
they will be filled in all occurrences of %u in the code. You can try it below:

Code Output
"Units in comments Units in comments m v
'Length -'1 = ?{1}'%u Length - /= Tm
"Area -'l = 2{1}'%u² Area - [= 1 m2
'Volume -'1 = ?{1}'%u³ | volume- V¥ = 1'm3

‘Scale factor -'Units Scale factor - Units

When you run the calculations, the "Units" combo will disappear from the output. Only the units will
remain as filled. The program will also create a variable Units, which will contain the conversion
factor from the selected units to meters. Its value is 1, 100 and 1000 for m, mm and cm, respectively.
You can use it for units conversion inside the calculations. For example, you can create a conditional
block for displaying the selected units in the report:
#if Units = 1
‘The selected units are meters
#else if Units = 100
‘The selected units are centimeters
#else if Units = 1000
‘The selected units are millimeters
#end if

Formatting with Html and CSS

Calcpad can be used as a development platform for professional engineering programs. If you are
not going to do that, you can skip this chapter.

Html (Hyper Text Markup Language) is a markup language which is created for formatting web
pages. You can change the font type, size and weight, the color of the text and to insert tables,
images, etc. This is performed by adding special elements called "tags". Each tag is enclosed in

Page 76 / 97

angular brackets: "<tag>". Some tags are used in pairs - opening "<tag>" and closing "</tag>". The
contents is going in between. For example, if you want to make some text bold, you can use the
following tags: Bold text. Even if you are not a professional programmer, you can easily
learn some basic Html, to use with Calcpad:

Html code Output
<h3>Heading 3</h3> Heading 3
<h4>Heading 4</h4> Heading 4
<h5>Heading 5</h5> Heading 5
<h6>Heading 6</h6> Heading 6

<hr/> (horizontal line)

<p>Paragraph</p> Paragraph

. Line
Line
break

break

Bold Bold
<i>Italic</i> Italic
<u>Underlined</u> Underlined
<s>Struck through</s> §¢Hﬂ§e;h;eagh
Red Red
x^{superscript} xsuperscript
x_{subscript} Xsubscript
)
Times, 14pt Times, 14pt

You can put Html tags only in comments, but you can also make them affect expressions. For example:

' as simple as ' 2 + 2 ''

will give the following output:

assimpleas2 +2 =4
We simply enclosed the expression with two comments. The first comment contains the opening tag
'" and the second - the closing tag '". Everything between
the two tags is colored in red. Make sure not to forget the quotes. Otherwise, the program will try to
parse the Html code as math expression and will return an error. The following code: style="color:red"

is called "inline CSS" (Cascading Style Sheets). It is used to format the look of Html documents. You
can learn more about Html and CSS from the following links:

http://www.w3schools.com/html/

http://www.w3schools.com/CSS/

You can also use some of the many free WYSIWYG Html editors available on the Internet.

Page 77 / 97

http://www.w3schools.com/html/
http://www.w3schools.com/CSS/

Predefined classes

Some formatting that is commonly used in engineering design worksheets is predefined as CSS
classes and can be inserted by simply assigning the respective class to Html elements.

err - adds red color to text:

‘ The check is not satisfied X''
The check is not satisfied X

ok - adds green color to text:

' The check is satisfied Vv ''
The check is satisfied v/

ref - (right aligned) it is used for references to design codes and equation numbering:
' [EN 1992-1-1, §9.2.2]''[EN 1992-1-1, §9.2.2]
bordered - adds border to tables:
'<table class="bordered">'...</table>"

data - makes the first column left aligned and the others - right aligned:

'<table class="data">'...</table>’
Content folding

If you have some long and detailed calculations, you can fold them optionally in the output. They
will be hidden by default, except for the first line, which can be used for the section heading. All you
need to do is to enclose the folding section into a Html "div" element with class "fold", as follows:

'<div class="fold">
'Heading (click to unfold)
'Content to be folded

'</div>

The result will look as follows:

Heading (click to unfold) ... ¥

Images

Before inserting an image into Calcpad document, you need to have it already as a file. You can
create it by some image editing software and save it to a *.png, *.gif or *,jpg file. You can use some
freeware programs like Paint, Gimp, InkScape, DraftSight or others. Then you can insert it using Html.
All you need to do is to put the following text at the required place, inside a comment:
'<img style="float:right" src="c:/Users/Me/Pictures/Picturel.png"
alt="Picturel.png">
Of course, instead of "c:/Users/Me/Pictures/Picturel.png" you must specify the actual path to your
image. The file can be local, network or on the Internet. Always use forward slashes "/", even if the
file is local. If the image is located in the same folder as the current worksheet, you can specify a
relative path as follows: "./Picture1.png". The text style="float:right;" aligns the image to the right
allowing the text to float at left. Otherwise, the image will become part of the text flow and will make
it split. Alternatively, to style="float:right", you can use class="side" for the same purpose.

Page 78 / 97

You can also insert an image using the x| button from the toolbar. You will be prompted to select
a file. When you click "Open", the required record will be inserted at the beginning of the code. When
you run the calculations, the picture will appear in the output window.

Formatting with Markdown

Markdown is a simple and lightweight markup language for text formatting. Unlike Html, it uses
individual symbols or short sequences of symbols for tagging. In Calcpad, you can use Markdown in
comments optionally, instead of Html. Since it requires an additional parsing step, you can switch it
on and off by using the following keywords inside your worksheet:

#md on - switches Markdown mode on;
#md off - switches Markdown mode off.

During parsing, the marked text is converted to Html and then passed for further processing. Since
this is performed line-by-line, block level formatting like lists, tables, etc. are not fully supported. You
can use the following syntax elements:

Markdown code Html code Output
Heading 3 <h3>Heading 3</h3> Heading 3
Heading 4 <h4>Heading 4</h4> Heading 4
Heading 5 <h5>Heading 5</h5> Heading 5
Heading 6 <h6>Heading 6</h6> Heading 6
- - - (horizontal line) <hr/>
Bold Bold Bold
Italic ltalic Italic
Bold Italic Bold Italic Bold Italic
++Underlined++ <ins>Underlined</ins> Underlined
~~Struck through~~ Struck through Struek-through
==Highlighted== <mark>Highlighted </mark> Highlighted
x“superscript® X^{superscript} x superscript
x~subscript~ x_{subscript} X subscript
> Code® <code>Code</code> Code

[Link] (https://mywebsite.com) Link Link
I[Image](image.jpg)

<blockquote>Blockquote 1
<blockquote>Blockquote 2
</blockquote> </blockquote>

Blockquote 1
Blockquote 2

> Blockquote 1
>> Blockquote 2

Page 79 / 97

https://www.markdownguide.org/
https://mywebsite.com/

Formatting Toolbar

The formatting toolbar is located just above the code editing box. It allows fast insertion of

formatting markup in comments. It supports both Html or Markdown, depending on your choice. To

enable Markdown, switch the M button on. Also, do not forget to add "#md on" on top of your

worksheet.

i
|

H3 H4 H5 H6 p br B I U S X X2 R G «» div v i= ;
The formatting toolbar includes the following commands:

H3 - Heading 3 (Ctrl+3), Html: <h3>...</h3>, Markdown: #i#i. . .

H4 - Heading 4 (Ctrl+4), Html: <h4>...</h4>, Markdown: ##i#. . .

H5 - Heading 5 (Ctrl+5), Html: <h5>...</h5>, Markdown: ####i#. . .

H6 - Heading 6 (Ctrl+6), Html: <h6>...</h6>, Markdown: ######. . .

p - Paragraph (Ctrl+L), Html: <p>...</p>, Markdown: not supported
br - Line Break (Ctrl+R), Html: ...
. .., Markdown: not supported
B - Bold (Ctrl+B), Html: ..., Markdown: ** ., **

I - ltalic (Ctrl+1), Html: . . ., Markdown: *. . . *

Ic

- Underline (Ctrl+U), Html: <ins>...</ins>, Markdown: ++. . .++
S - Strikethrough (no shortcut), Html: ..., Markdown: ~~. . .~~

X2 - Subscript (Ctrl+"+"), Html: _{...}, Markdown: ~. . .~

X
N

- Superscript (Ctrl+Shift+"+"), Html: ^{...}, Markdown: ~. ..~
R - Red Color (no shortcut), Html: ...,
Markdown: not supported

G - Green Color (no shortcut), Html: ...,

Markdown: not supported

«/> - Span (no shortcut), Html: . . ., Markdown: not supported

div - Div (no shortcut), Html: <div>...</div>, Markdown: not supported

V - Folded Div (no shortcut), Html: <div class="fold">...</div>,
Markdown: not supported

:= - Bulleted List (Ctrl+Shift+L),

Html: <1i>...</1i><1i>...</1i><1i>...</1i>,
Markdown: not supported

Ml

Page 80 / 97

1.— - Numbered List (Ctrl+Shift+N),

2. =
Html: <1i>...</1i><1i>...</1i><1i>...</1i></0l>,
Markdown: not supported

s}

- Image (no shortcut),

Html: ,
Markdown: not supported

B - Table (no shortcut), Html:

<table class="bordered">
<thead><tr><th>...</th><th>...</th></tr></thead>
<tbody>

<tr><td>...</td><td>. . .</td></tr>
<tr><td>. . .</td><td>. . .</td></tr>

</tbody>

</table>,

Markdown: not supported

— - Horizontal line (no shortcut), Html: <hr/>, Markdown: - - -

To apply a formatting tag to a certain part of the text, select the part first and then press the
respective button. If you press it once again, you will remove the existing formatting of the same
type. Calcpad supports word autoselection. If you click inside a word and press a formatting button,
it is applied for the whole word.

Programming

Input Forms

If you have a long and complicated problem or you want to share your solution with others, it is a
good idea to create an input form. It is very easy to do that with Calcpad. Just replace the values that
need to be entered with question marks "?", e.g. "a = ?". Please note that after that, you will not be
able to calculate the results directly by clicking “<". You must compile it first to an input form. For
that purpose, click the ™= button or press F4 from the keyboard.

The code will hide, and the form will be loaded into the "Input" box at the full width of the main
window. All texts and formulas will be rendered in Html format, protected from modification. Input
boxes will be generated at every occurrence of the "?" symbol except those in comments. The ready-
to-use input form will look as follows:

Page 81 /97

X Calcpad 6.2.1 - Quadratic Equation.cpd

File Edit Insert Qutput Help Numbers:
t y:‘\vH o Real | Complex
Input

Quadratic Equation

fixy= ax*+bhx+e=0

Coefficients:
a= 2/ ,b= 3l,¢c= -5
#ifa=0

The coefficient a is equal to zero. The equation is linear.

x=

> a

Helse
Discriminant:
D=b'-4ac
#Hf D=0

The discriminant is grater or equal to zero. Real roots exist.

¢ =-05(b+ sign(h)-\,’H]

q
xy==+
g
x,=L
X, m

SPIot{x | fix) & 11| 0 & 12 [0 @ ¥ € [Trin X}

#else

The discriminant is less than zero. There are no real roots.

$Plot{x | f{x) @ X € [Xmins Xmax]}

#end if

Roundto @ 2 digits [|Substitute Plot: [v/] Adaptive [v] Shadows: North

-] x
Angles: Non-metric units: Equation format:
_5[D R G UK | US Professional | Inline H ﬁg.f |jt @ @
~
v
Palette: Rainbow ~ [smooth External browser. Chrome * MPOEKTRECOMT

Now you have to fill in the input boxes and click "+ to calculate the results. They are displayed in the

"Output” box.

X Calcpad 6.2.1 - Quadratic Equation.cpd

File Edit Insert Qutput Help Numbers:
t L:‘\'H o Real | Complex
Qutput

Quadratic Equation

flx)y= ax*+bhx+e=0

Coefficients:

a=2,b=3,c=:3

Discriminant:

D=h?-4ac=3>-42(5=49

The discriminant is grater or equal to zero. Real roots exist.

g =-0.5-(b +sign(b)~[[) = -0.5:(3 + sign(3)/49) = -5

.\-l—i-g-fz.s
a 2
q -5
[1.88; 7.66]
y
7
6
&
4
3
2
1
0 X
-1
2
-3
-4
-5
E]
o 3 25 2 15 1 -0.5 0 0.5 1 15
Roundto = 2 digits [|Substitute Plot: [v/] Adaptive [v] Shadows: North

- o X
Angles: Non-metric units: Equation format:
D R G UK | US Professional Inline H LJE? |_"|E @ @
~
v
Palette: Rainbow ~ [smooth External browser: Chrome * MPOEKTRECOMT

In order to return to input mode, click again © to switch the button off. Input data will remain

unchanged from the last input. If you need to modify the source code, you have to unlock it by

clicking the = button. The "Code" box will show again at the left side of the main window. Input

Page 82 / 97

data will be attached to the question marks. If you hover the mouse over one of them, you will see
the respective value. Click on the question mark to change it. When you finish editing the code, you
can compile it back to input form. The input values will be filled in the respective fields. Finally, you
can save the document as a "*.cpd" file. When you open such a file, it will be displayed directly into
input form mode. This format is more convenient to use than a simple text file due to the following
advantages:

e The user can see clearly which parameters should be entered. You can also provide pictures
and additional explanations. This is more comprehensible for the user, especially if the program
is developed by someone else;

e The rest of the source code is protected from modification, unless you unlock it on purpose.
This prevents an inexperienced user from accidentally damaging the calculation formulas.

If you save the document as a "*.cpdz" file, you will make the source code completely inaccessible.
It will not be possible to unlock it inside Calcpad anymore. Also, no one could edit the file in external
text editor, because it is encoded. That is how you can protect your source code from unauthorized
copying, viewing and modification.
You can put question marks "?" not only in variable definitions, but at any place in the code e.g.:
2+ 7
2 +
Then, you can enter a value and calculate the result. This approach is not recommended for
complicated problems, because the program logic gets unclear and difficult to understand.

Advanced Ul with Html and CSS

Besides simple input boxes, you can use some advanced Ul elements like "select” (combo box),
“radio” buttons and "checkboxes" in your worksheets. Since all the output from Calcpad is rendered
as an Html document, you can use Html and CSS for that purpose. However, Calcpad accepts input
only from text boxes. That is why, it is required to map every other Ul element to some text box. This
is performed by enclosing the text box into an outer html element (paragraph or div) with a certain
id. The same id must be assigned as a name or data-target attribute of the source Ul element. Then,
the content of the source element's value attribute will be automatically filled in the target text box.
You can use the following sample code:

Selection box:

Code:

‘Select an option: <select name="targetl">

‘<option value="11;12">x1; yl</option>

'<option value="21;22">x2; y2</option>

‘<option value="31;32">x3; y3</option>

'</select>

‘<p id="targetl"> Values:'x = ? {21}','y = ? {22}'</p>
Output:

Select an option: | x2; y2

Page 83 /97

Values: x = | 21],y = | 22,

Radio buttons:

Code:
‘<p>Select:
"<input name="target2" type="radio" id="optl" value="1"/>
'<label for="optl">option 1</label>
"<input name="target2" type="radio" id="opt2" value="2"/>
'<label for="opt2">option 2</label>

'<p id="target2">Value -'opt = ? {2}'</p>
Output:
Select: O option 1 @ option 2

opt=___2]
CheckBox:
Code:
'<p><input name="target3" type="checkbox" id="chkl" value="3"/>
'<label for="chkl">Checkbox 1</label></p>

'<p id="target3">Value -'chk = ? {3}'</p>
Output:
Checkbox 1

chk = | 3

As you can see from the first example, one "value" attribute can contain multiple values, separated

by semicolons ";". In this case, you have to provide the respective number of text boxes in the target
paragraph. You can copy the above code, add as many options as you like and write your own labels
and values. You can also change names and ids, but make sure that all source names match exactly
the target ids, and no duplicate ids exist.

Output control

You can easily specify which parts of the code should be visible or hidden in the output. Unlike
conditional execution, the hidden code is always calculated. It is just not displayed. The following
keywords can be used for that purpose:

#Hide - hides the contents after the current line;

#Pre - shows the contents in "input” mode only (see ""Input forms" below);
#Post - shows the contents in "output” mode and hides it in "input" mode;
#Show - always shows the contents (revoke all other keywords);

Each of the above keywords affects the content after the current line and overrides the previous one.
You can use them to hide long and repetitive calculations that should not be visible. You can use the

Page 84 / 97

#Pre command to add some directions about filling the input data and #Post to hide the calculation
algorithm during data input.

You can also modify the display of the equations as follows:
#Val - shows only the final result as a single value;
#Equ - shows both the equation and the calculated result (default);
#Noc - shows only the equation, without results (no calculations).

Each of the above keywords overrides the other. You can use #Val to create a table with values, but
without the formulas, like in Excel.

Conditional execution

Sometimes the solution has to continue in different ways, depending on some intermediate values.
Such feature is included in Calcpad, similarly to other programming languages. It is called
"conditional execution block" and has the following general form:
#If conditionl
contents if condition1 is satisfied
#Else If condition2
contents if condition2 is satisfied
#Else If condition3

contents if condition3 is satisfied

#Else

contents if none of the conditions is satisfied
#tend if

Shorter forms are also possible:
#If condition

contents if the condition is satisfied
#Else

contents if the condition is not satisfied
#end if
or:
#If condition

contents if the condition is satisfied
#tend if

Condition blocks affect not only the calculation path but also the report content like text and images.
The "#" symbol must be the first one in the line. At the place of "condition" you can put any valid
expression. Normally, a comparison is used like "#If a < 0", but it is not obligatory. If it evaluates to
any non-zero number, the condition is assumed to be satisfied. Otherwise, it is not satisfied. Any
result which absolute value is < 0.00000001 is assumed to be zero.

Let us look again at the quadratic equation example that we used earlier. If we enter "¢ = 5", the
discriminant will be negative, and the result will be NaN. This is not a very intelligent way to finish a

Page 85 /97

program. What we need to do is to check if "D < 0" and if so, to provide a comprehensible message.
Otherwise, we have to calculate the roots. We can do this, using conditional execution, as follows:

Code Output
1 "Quadratic Equation
2 'a-x² + b:x + c = 0 Quadratic Equation
3 'Coefficients: 5
4 a=2",b=3",c=-5 ax“+bx+c=0
5 'Discriminant -'D = b"2 - 4*a‘*c Coefficients:
6 #if D 0
7 'Calculation of roots a=2,b=3,¢c=5
8 q = -@.57(b + sign(b) sqr(D)) Discriminant - D = b? —4-a-c =3?—4-2:5="31
9 x_1 q/a
10 X 2 There are no real roots
11 #else
12 'There are no real roots
13 #end i-FI

Iteration blocks

You can have simple iterations inside a Calcpad program. For that purpose, you have to define a
"repeat-loop"” block:

#Repeat n
code to be executed repeatedly
#Loop

The symbol n stands for the number of repetitions. Instead of #n, you can put a number, variable or
any valid expression. If the result of the expression is not integer, it is rounded to the nearest one.
You can exit the repeat-loop cycle prematurely by putting #Break inside the block. It will make sense
only if you combine it a conditional block. Otherwise, it will always break at the same line, without
performing any loops. A typical "repeat-break-loop" will look like this:

#Repeat
code to be executed repeatedly
#|f condition
#Break
#End if
you can have more code here
#Loop

You can also use #Continue instead of #Break inside the condition. The program will skip the
remaining lines, return to the top of the loop block and continue with the next iteration. You can
omit the number of repetitions n only if you are sure that the condition will be satisfied, and you will
leave the loop sooner or later. However, to avoid infinite loops, the number of iterations is limited
internally to 10 000 000.

Besides repetitive calculations, you can use loops to generate repetitive report content (like table
rows). If you want to hide the iteration details, you can use output control directives (see the previous
section). For example, you can enclose the "repeat-loop" block with #Hide and #Show statements.

Since version VM 7.0, two new iteration blocks were added: "for-loop" and "while-loop", as follows:

Page 86 / 97

#For counter = start : end
code to be executed repeatedly
#Loop
#While condition
code to be executed repeatedly

#Loop

Interactive (step-by-step) execution

You can make a Calcpad worksheet to execute interactively (step-by-step) by defining "breakpoints"
at certain lines. It will allow the user to review the intermediate results and enter some additional
input data if needed. There are two special keywords you can use for that purpose:

#Pause - calculates down to the current line, displays the results and waits for the user to resume;
#Ilnput - renders an input form to the current line and waits the user to enter data and resume.
When the execution is paused, the program renders a message at the bottom of the report:
Paused! Press F5 to continue or Esc to cancel.
You can resume the execution by pressing F5, clicking the link or the "+ button again. You can have
several breakpoints in a single worksheet. When you use the #Input keyword, the previous section is

calculated before the current input form is displayed. In this way, the stages of calculation overlap as
shown in the following example:

Code Run1 Run 2 Run 3 Run 4 Run 5

Section | Input Calcu-
1 form lated

#lnput Paused!

Section Input Calcu-
2 form lated
inout |
Section Input Calcu-
3 form lated
it
Section Input Calcu-

form lated

Additionally, the user can press "Pause/Break" or "Ctrl + Alt + P" any time from the keyboard to
pause the execution. The execution will pause at the current line as if #Pause is detected.

Eh

Page 87 / 97

Modules (include)

Calcpad allows you to include content from external files in your worksheet. If you have pieces of
code that is repeated in different worksheets, you can organize it in modules and reuse it multiple
times. Also, if you have a longer worksheet, you can split it into modules that will be easier to maintain.
Then, you can include them into the main file by using the following statement:

#include filename

The "filename" must contain the full path to a local file. If the file is the same folder as the current
one, you can specify only the filename.

By default, Calcpad will include the whole contents of the external module. However, you can prevent
some parts from inclusion by making them local. To start a "local" section in a module, add a new
line, containing the #local keyword. To end a "local" section (or start a "global” one), add a new line
with the #global keyword. Calcpad supports multiple levels of inclusions. That means that the
included file, in its turn, can reference other files and so on.

Macros and string variables

Macros and string variables are convenient ways to organize your code inside a single file and
prevent repetitions. They can be inline or multiline. Unlike string variables, macros can have
parameters. You can define them by using the following statements:

Inline string variable:
#def variable name$ = content

Multiline string variable:
#def variable name$
content line 1
content line 2

#end def

Inline string macro:
#def macro_name$(param1$; param?2$;...) = content

Multiline string macro:
#def macro_name$(param1$; param?2$;...)

content line 1

content line 2

#end def

Names of string variables, macros, and their parameters can contain small and capital Latin letters
and underscore "_". They must end with the "$" symbol. The contents can be virtually any string. It is
not necessary to be a valid Calcpad expression, since it is not processed by the parser at this stage.
However, other macro/string variable definitions are not allowed inside. You can insert only
references to previously defined ones. Also, input fields "?" are not supported in macros yet. This
feature will be developed in the next versions. You can use #include inside macros, but only if the
included file does not contain other macros.

Page 88 / 97

After a string variable is defined, you can use it anywhere in the code by writing its name (with the
ending "$"). The same is for macros, but you also need to specify values for parameters. Macros and
string variables are preprocessed and rewritten before the actual parsing is performed. As a result,
intermediate (unwrapped) code is generated. You can review it by checking the "Unwrapped code”
checkbox below the "Output” window.

If any errors occur during macro preprocessing, the unwrapped code is displayed, together with the
errors. Line numbers in error descriptions refer to your initial code. If preprocessing is completed
successfully, the unwrapped code is parsed and calculated as normal. If errors are detected at this
stage, they are displayed in the output. Line numbers in error descriptions refer to the unwrapped
code. You can go to the respective line by clicking the link on the line number.

Import/export of external data

You can import and export numerical data from/to text, CSV and Excel files. Inside Calcpad, data
should be stored in a matrix/vector variable. You can also read and write partial data by specifying
the desired range. Structured storage of special matrices is supported for saving space. The following
commands are available:

Text/CSV files
#read M from filename.txt@R1C1:R2C2 TYPE=R SEP="," - reads data from the specified
text/CSV file into the matrix/vector M. The file must exist;

#write M to filename.txt@R1C1:R2C2 TYPE=N SEP="," - writes data from matrix/vector M to
the specified text/CSV file. If the file exists, it is entirely overwritten. Otherwise, a new file is
created. In all cases, the path to the file must exist;

#append M to filename.txt@R1C1:R2C2 TYPE=N SEP="," - appends data from
matrix/vector M to the specified text/CSV file. If the file exists, the data is appended at the end
of the existing file. Otherwise, a new file is created. In all cases, the path to the file must exist.

Command options

M - the name of the matrix/vector that contains the data [required];
filename.txt - the name and path of the input/output file [required]. If the path is omitted, the file
is assumed to be in the same folder. Extension is required. Any valid extension is
allowed (except those for Excel), including txt and csv, as long as the data in the file
is in text format;

R1C1:R2C2 - data range in the input file [optional]:
R1C1- starting row and column indexes [optional]:
R1 - row index: includes capital letter "R", followed by the number of the row [optional];
C1 - column index: capital letter "C", followed by the number of the column [optional];
R2C2 - ending row (R2) and column (C2) indexes as above [optional];

Indexing starts at 1. You can skip any of the starting and ending row/column indexes.
In this case, the default values of 1 and matrix dimensions are taken. Starting indexes
can be greater than ending ones. Some examples are given below:

Page 89 / 97

c1/c2/c3/c4lcs

c1/c2/c3/ca/cs5

c1/c2/c3/c4/c5

TYPE=R - The type of matrix/vector for structured storage [optional].

Ri|11[12]13] 14 15| [R1]1112]13]14]15] [R1 R111]12/13] 1415

R2 [21 R2| 21 22 [PEIPIHPI | R2 R2

R3 [31 R3| 31 32 [EfEiEE] | R3 R3

R4 | 41 Ra| 41| 42 [PERVRNEN |Ra| 41|42 |43 44|45([Ra

RS | 51 R5 | 51 | 52 NNVl [R5 | 51|52 53 54 55| [R8] 515253 54]55
@R2C3:R4C4 @R2C3 @:R3C4 @R2:R4
c1/c2/c3/c4/cs c1/c2/c3/c4 c5 c1/c2/c3/c4/cs c1/c2/c3/c4/cs

R1 R1|11]12 1314 15| [Re]11] 12 [EEEEN R1| 11 15

R2 R2| 212223 24] 25| [R2] 21|22 [PXIPYEPIN |R2] 21 25

R3 R3 [EMEPEENETY 35 [[R3| a1 o2 [ERMEIIEE | R3 | 51 35

R4 R4 [ARRYRRERRYY 45 | |Ra| 41|42 RPN | R4 4142434445

R5 RS I PANE IS 55 | [R5 (51| 52 JECMEYIERN |Rs |51 | 52|53 5455

@R3:C4 @C3 @R3C4:R1C2

For the #read command, TYPE can be any of the following capital letters:

R
C

- column matrix;

D - diagonal matrix;

S

- rectangular matrix (default);

- symmetric skyline matrix;

L - lower triangular matrix;

U

V - vector.

- upper triangular matrix;

If you want to use the high-performance version of the type, add _hp after the type

letter. For example: R_hp or S_hp .

For column and diagonal matrices values can be stored either on a single line or in a

column of one value per line. For diagonal matrices only the values along the main

diagonal are stored, for lower triangular - only below the main diagonal, and for

symmetric and upper triangular - only above the main diagonal. Vector values can

be spread along multiple lines, but all are collected in a single vector consequently

line-by-line. Examples for structured storage are provided below:

Diagonal matrix (D) Symmetric matrix (S) Vector (V)
File Matrix File Matrix File Vector
[1]2]3]4a]5] |1 1]2 2 1]2[3| > [1]2|3]a[5]6]|7[8]9]
2 3|45 3|45 4|5
- 3 6|7 - 467 6|78
4 89 5 7|8|9 9
5 10 9 |10

For the #write and #append commands TYPE can be one of the capital letters below:

Y - Yes, the matrix structure is used;

N - No, the matrix structure is not used (default);

If “N" is selected, all matrices are stored as rectangular, regardless their type and

internal structure. All elements after the last nonzero value on the row are skipped.

SEP=",'

- separator [optional]. You must specify a single character in quotes. For the #read

command it must correspond to the actual separator used in the input file.

Page 90 / 97

The minimum allowed syntax for the above commands if all optional keywords are skipped is:

"#read M from filename.txt” or "#write M to filename.txt" or "#append M to filename.txt".

Excel files

#read M from filename.xlsx@Sheet1!A1:B2 TYPE=R - reads the data from the specified Excel
file into the matrix/vector M. The file must exist as well as the specified worksheet;

#write M to filename.xlsx@Sheet1!/A1:B2 TYPE=N - writes data from matrix/vector M to the

specified Excel file. A new file with a single worksheet is created. If the file exists, it is entirely

overwritten. The path to the file must exist;

#append M to filename.xlsx@Sheet1!A1:B2 TYPE=N - appends data from matrix/vector M to

the specified Excel file. If the file exists, the data is written in the existing file at the specified

location. Otherwise, a new file is created. In all cases, the path to the file must exist.

Command options

M - the name of the matrix/vector that contains the data [required];

filename.xlsx - the name and path of the input/output file [required]. If the path is missing, the file

is assumed to be in the same folder. The supported extensions are xlsx and xlsm;

Sheet1 - the name of the target worksheet [optional]. If omitted the first worksheet is used

for existing files and Sheet1 is assumed for newly created worksheets.

A1:B2 - target cell range [optional]:

AT - starting cell reference [optional], where A is the column name and 1 is the row index;

B2 - ending cell reference as above [optional];

Column names start at A, and row numbers start at 1. You can skip any of the starting

and ending column/row references. In this case, data is read to the first and last

nonempty cells, respectively. The starting cell references can be greater than the

ending ones. Examples for data import settings are provided below:

A|B|C|D|E A|B|C|D E A|B|C |D E A|B|C D E
1 14 1 1(11(12(13 (14 1
2 23 | 24 2 23|24 |25([2 [21|22]|23]|24 2 |21|22|23|24(25
3 33|34 3 33|34 |35((3 |31)|32]|33|34 3 |31|32|33|34(35
4 |41 424344 4 43|44 |45| | 4 4 141)|42|43|44 |45
5 5 53|54 (55| |5 5

C2:D4 Cc2 D3 2:4

A|B|C|D|E A|B|C | D E A|B|C|D E

1 13 |14 1 14 1 13 (14 |15
2 23 | 24 2 24 2 23| 24|25
3 33|34 3 |31|32|33|34 3 33| 34|35
4 43 | 44 4 |41|42|43 |44 4 43| 44|45
5 53 | 54 5 |51|52|53|54 5 53 | 54 | 55

C:D 3:D Cc

The behavior of data export commands #write and #append is a bit different. The

starting reference indicates the location of the first element M31,1 of the output matrix.

So, even if it is greater than A1, it will not truncate the first rows and columns. Unless

bound by the ending reference, the entire matrix will be written after the specified

location. Otherwise, the remaining rows and columns after the ending reference will

be truncated. For example: #write M to filename.xlsx@Sheet1!C2 will produce the

Page 91 /97

following output:

11112 (13|14 | 15
21 (2223|2425
31(32)33|34(35
41142 |43 (44 | 45
51 (52|53 |54 (55

N O o & O N KL

TYPE=R - type of matrix/vector for structured storage [optional]. The same rules apply as for
text/CSV files above.

Results

You can run the solution by pressing F5 or clicking the "< button. The results will appear in the
"Output” box. You cannot edit the output content, but you can select, copy and print it. For that
purpose, you can use the toolbar above the "Output” box on the right. You can also use additional
commands from the context menu, that is displayed If you right-click inside the "Output” box, you
will see a pop-up menu with additional commands. Detailed description is provided further in this
manual.

Since version 6.5.3, you can use the "M AutoRun" mode. While it is checked, the results will refresh
each time you change the code and move to another line. If you need to synchronize the results
manually, you can press "Ctrl + Enter". Additionally, the output window will scroll to match the
current position in the source code. You can do the same by double clicking into the input window.

Substitution

Calcpad can substitute the values of variables in all formulas in the output, just before the answer:

_b-\D _-3-+89
v = - — -155
T o0 24

For that purpose, you need to check the "Substitution” checkbox at the bottom of the program

window. That makes the results easy to review and check. This is important when calculations have
to be checked by supervisors, teachers etc. This is also an advantage over the spreadsheet software
where the actual formulas are hidden in the cells.
If you do not need the substitution, you can uncheck this option. Then the answers will follow directly
the calculation formulas:
_b=VD _ 4

2-a
After that, if you position the mouse over a variable, you will see a tooltip with the respective value.

X4

There is also an option to control the variable substitution behavior inside worksheets. You can use
the following switches for that purpose:

#nosub - do not substitute variables (no substitution);

#novar - show equations only with substituted values (no variables);

#varsub - show equations with variables and substituted values (default).

Page 92 / 97

If an equation gets too long and does not fit on a single line, you can choose the way it looks in the
output by using these two switches:

#split - the equation is split after the "=" symbol;
#wrap - the equation is wrapped at the end of the line (default).

Rounding

Rounding is specified by the number of digits n after the decimal point. It is entered into the
"Rounding"” input box at the bottom of the program window. The value of n can be between "0" and
"15". If you enter "0", all results will be rounded to integers. If the value is less than "0" or greater
than "15", the respective limit will be taken.

However, rounding can come across some potential problems. If the result is less than 107" and you
round it to n digits after the decimal point, the result will contain only zeros. That is why, Calcpad
incorporates some advanced rules: If the output contains less than 7 significant digits after rounding,
it is expanded up to 7 significant digits. Even then, if the number is too small, it will be difficult to
count the zeros after the decimal point. So, in such cases, the output is converted to floating point
format with 7 digits. When the total number of digits becomes greater than 2n, the factional part is
being truncated. In this way, the output becomes easier to read, still providing at least 27 significant
digits. You can see several examples below, obtained for n = 3.

0.000001-z = 3.14E-06

0.001-z = 0.00314

0.1 = 0.314

1z =3.142

1000-7 = 3141.59

10000007 = 3141593

Rounding affects only the way in which numbers are displayed in the output. Internally, all numbers
are stored with the maximum possible precision. That is why, if you print the output and try to repeat
the calculations with the numbers from the report, you probably will get some little differences. This
is because you use the rounded values instead of the actual ones.

You can override the global rounding inside a worksheet by using the #Round n keyword, where n is
the number of digits after the decimal point (from "0" to "15"). To restore the global rounding,
enter #Round default.

Formatting

Calcpad does not simply calculate formulas. It also builds a professionally looking report out of your
source code. It uses Html to format the output. It is widely recognized and allows you to publish your
calculations on the web. You can select between two different styles for equation formatting:
"professional” and "inline". The professional style uses division bar, large and small brackets, radical,
etc. Numerator and denominator are displayed one above the other. The inline style uses slash for
displaying division and all symbols are arranged in a single line. The following formatting rules apply:

e Intervals are maintained automatically.

e Variables are formatted as italic.

Page 93 /97

e Multiplication operator "*" is replaced with "-".

e Exponentiation operator "A" is formatted as superscript.

e Underscore "_" is formatted as subscript.

e Square root function is replaced with radical \".

Several examples of formatting in different cases are provided in the table below:

Text Html
X + 3 x+3
X-3 x-3
3*x 3.x

x+1

(x +1)/3 (x+1)/30rT

X+3 *y x+3y
sqr(x+3) |Vx+3

x_1"3 X3

sin(x) sin(x)

Html formatting makes the report easier to read and check than the respective plain text. You can
also insert additional Html code inside the comments that will affect the final appearance. In this way,
you can use Calcpad code to build professional Web applications. You will also need the cloud
version of Calcpad for that purpose.

Calcpad uses for decimal separator the symbol defined in the Windows' Regional Settings.

Custom format strings
You can specify format strings for different parts of your worksheet and even for individual output
values. At worksheet level you can do that by following command:
#format format string
To restore the default formatting, add the following line:
#format default

To specify a custom format string for an individual output value, add a colon followed by the
respective string, e.g.:

x = 12.345:format string
If you have units, the format specifier is positioned after the units:

x = 12.345cm: format string

There are several types of format strings that you can use:

Code Description Examples

Exponential (i.e. engineering or scientific).

En n - number of decimal digits (0-17) 123456.789:e = 1.234568e+005

or . . . 0.00123456:e2 = 1.23e-003

on The default value is n = 6 if omitted. When 1234567893 = 1.235%10+008
capital E is used, the result is displayed as x107°% T

Page 94 / 97

Code Description Examples

Fn Fixed-point. 123.456789:f = 123.46
or n - number of decimal digits (0-17) 9.00123456:F5 = 0.00123
fn The default value is n = 2 if omitted. 123:F2 = 123.00

General.
Gn n - number of significant digits (0-17) 123.456789:g = 123456789
or . ; . 0.0012345678:g3 = 0.00123
gn The defau!t Valu.e IS 71 :.15 i On.“tte.o.l' 123456m:G3 = 1.23x10°m

Displays either fixed point or scientific.

Number (fixed point with digit grouping).
Nn n - number of decimal digits (0-17) 123.456789:n = 123.46
or The default value is n = 2 if omitted. The 0.0012345678:N3 = 0.001
nn symbols defined in Windows' Regional Settings ~ 123456:N3 = 123,456.000

are used for thousands and decimal separators.

Currency (fixed point with currency symbol and
Cn digit grouping) , .- 123.456789:C = 123.46 €
or n - number of decimal digits (0-17) 0.0012345678:C3 = 0.001 €
on The default value is n = 2 if omitted. 123456+ C = 123.456.00 €

The currency symbol defined in Windows' '

Regional Settings is used.
0 Custom. 123.456789:000000 = 000123
It is composed of the following characters: 123.45:0.0000 = 123.4500
00# 0 - zero placeholder. Displays either a digit or 123.45:0.#### = 12345
0.000 zero if a digit is not available. 0.00123456:#. ##### = .00123
##H# # - optional digit placeholder. Displays a digit if = 1234567:#,#.0 = 1,234,567.0
0,000.0## available or nothing. 1234567:0.00e+00 = 1.23e+06
0.0E+00 . - decimal separator. 1234567:0.00e-0 = 1.23e6
0.#e-00 , - group separator. 0.01234:#.##e-000 = 1.23e-002
etc. E e E+, e+, E-, e- - exponential notation. 9.12:0.000e-00 = 1.200e-01

Scaling

You can scale up and down the text size in the output window. Hold the "Ctrl" button and rotate the
mouse wheel. The forward rotation will scale up and the backward will scale down.

Saving the output

You can save the output to an Html file . Unlike the input file, it cannot be modified with Calcpad.
On the other hand, everyone will be able to view and print your calculations without Calcpad. Html
files can be opened on any computer using web browser or office program like Word.

You can save the file by clicking the |7 button above the output box. Then select a file name and
click "Save".

Printing

You can print the output by clicking the (=3 button. Normally, printing is performed after calculations.
When you click the button, the print preview dialog will be displayed:

Page 95 /97

Print 6/30/25, 9:23 PM Created with Calcpad
Total: 1 sheet of paper

Cubic Equation
Prteg f)=x3+ax2+bx+c=0
CutePDF Writer Coefficients:
a=-6 ,b=11 ,c=-6
Lo Solution:
1 Q= a’-3:b _ (6)2-311 =0.333
9 9

2:a3-9-a-b+27-c _ 2:(:6)3-9:(-6)-11+27-(-6) _,,
54 54
Check: R2=02=0 < Q% =0.333% = 0.037

R=

There are three real roots.

R 0
U:acos(_) =aco‘(—) =157
Vo3 0.3333

Xq=-2- cos(—)——‘ cos<157)—£—1
0= Q: 3 3 0.333 3 3"

0-2-1 a 57 - 2-3.14 6 _.
Xy = zﬁcos() § 0.333" cos(3)—?72
x3=-2- \[—) cos((“) EI 0.333- cos(L +32'3']4) - :6 =3

6 "
5 ‘ £
/

It allows you to set the paper layout, margins, size, type, etc. Printing in Calcpad uses the built-in
functionality of Windows and Edge. The above screenshots may look different on your computer,
depending on the versions you use.

Copying

You can copy the entire output at once by clicking the 1 button above the output window. Then,
you can paste it in any other program. If the target program supports Html, like Word, the formatting
will be preserved. Otherwise, the content will be pasted as plain text.

Export to Word

You can open the results directly with MS Word by clicking @"). It must be installed on the computer,
but it is not necessary to be preliminary open. This approach is easier than copy-paste and provides
some additional benefits. If the output is obtained with the professional equation formatting option,
Calcpad will use the "*.docx" file format for export. This is the native format for the latest versions of
MS Word and will open automatically. If you have Open Office or Libre office, the respective
program will be used instead. If you do not have any text editor currently installed, the file will be
saved to the disk but not open. You can go to the respective folder later and open it manually.
Formulas are exported as MathType objects and can be modified inside Word. However, it is possible
to lose part of the Html formatting. Images, tables and most common tags are supported. If you
have selected inline equation formatting, Calcpad will use an Html file for the export. It will preserve
most of the formatting, but formulas will be part of the document text.

Export to PDF

A good alternative to Html is to save the report as pdf file. It is another way to make a hard copy of
your calculations. Click the & button and select the name and the location of the file. The program
will save the output to the specified file and open it with the default viewer. The pdf is always
generated in A4 page size.
Alternatively, you can use a pdf printer. There are a lot of free pdf printers over the Internet. Just
download and install one. After that, the process of printing is not much different than any other
printer. Detailed description of printing from Calcpad is provided above.

Page 96 / 97

Working with files

Input data in Calcpad can be saved to disk and reused multiple times. The supported file formats are
"*txt", "*.cpd" and "*.cpdz". Input forms have to be saved to "*.cpd" and "*.cpdz" files and text
scripts to "*.txt" files. Both "*.cpd" and "*.cpdz" file types are associated with Calcpad and can be
opened with double click. The main difference between the two formats is that "*.cpd" is a text file
and can be edited while "*.cpdz" is binary and can be only executed. The source code inside is
protected from viewing, copying and modification.

New

You can start a new file by clicking the | 7] button. This will clear the file name and the source code.
If the current file is not saved, you will be prompted to do that.

Calcpad X

File not saved. Save?

Yes No Cancel

If you answer "Yes", the "File Save" dialog will appear. Enter file name and click "Save". Thus, you
will preserve your data before being cleared. If you select "Cancel" you will interrupt the command
and everything will remain unchanged.

Open

You can open an existing file with the [button. A file selection dialog will appear. The active file
extension is "*.cpd", by default. If you search for "*.txt" or "*.cpdz" files, select the corresponding type
at the bottom of the dialog. Then find the required file and press "Open" or double click on the file.
It will be loaded into Calcpad and the file name will be displayed in the title bar.

Save

You can save the current file by clicking the | button. If the file has not been saved so far, you will
be prompted to select path and name. Otherwise, it will be rewritten at the current location.

Save As...

If you need to save the current file with a different name, select the "File/Save As..." menu command.
A file selection dialog will be displayed. Select file path and name and click "Save"

Last edited on 29.12.2025 by eng. Nedelcho Ganchovski.

Page 97 / 97

