Geometrical Properties Calculate Settings

Geometrical Properties of Double Tee Section


double-tee.png

Dimensions

h = m, tw = m

bf1 = m, tf1 = m

bf2 = m, tf2 = m

Area

Aw = h·tw m2

Af1 = (bf1twtf1 m2

Af2 = (bf2twtf2 m2

A = Aw + Af1 + Af2 m2

Centroid

yc = max(bf1; bf2)2 m

Sy = Aw·h2 + Af1·tf12 + Af2·(htf22) m3

zc = SyA m

Perimeter

P = 2·(h + bf1 + bf2tw) m

Second moments of area

Iy_w = Aw·(h212 + (zch2)2) m4

Iy_f1 = Af1·(tf1212 + (zctf12)2) m4

Iy_f2 = Af2·(tf2212 + (hzctf22)2) m4

Iy = Iy_w + Iy_f1 + Iy_f2 m4

Iz = tf1·bf13 + tf2·bf23 + (htf1tf2tw312 m4

Polar moment of area

Ix = Iy + Iz m4

Radii of gyration

ry =  IyA m

rz =  IzA m

rx =  IxA m