Geometrical Properties Calculate Settings
Dimensions
a = m, b = m
t = m
a1 = a – t m
b1 = b – t m
Area
A = π·(a·b – a1·b1) m2
Centroid
yc = a m, zc = b m
Perimeter (approx.)
P = π·(3·(a + b) – √(3·a + b)·(a + 3·b)) m
Second moments of area
Iy = π4·(a·b3 – a1·b13) m4
Iz = π4·(b·a3 – b1·a13) m4
Polar moment of area
Ix = Iy + Iz m4
Torsional constant
k = b1b
#else
k = a1a
#end if
It = π·a3·b3a2 + b2·(1 – k4) m4
Torsional section modulus
Wt = π·a·b22·(1 – k4) m3
Wt = π·b·a22·(1 – k4) m3
Radii of gyration
ry = IyA m
rz = IzA m
rx = IxA m